-
1
-
-
0038589165
-
-
0169-7552 10.1016/S0169-7552(98)00110-X
-
S. Brin and L. Page, Comput. Netw. ISDN Syst. 30, 107 (1998). 0169-7552 10.1016/S0169-7552(98)00110-X
-
(1998)
Comput. Netw. ISDN Syst.
, vol.30
, pp. 107
-
-
Brin, S.1
Page, L.2
-
2
-
-
0012526528
-
-
Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya, () (in Russian)
-
A. A. Markov, Rasprostranenie zakona bol'shih chisel na velichiny, zavisyaschie drug ot druga, Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya, 15, 135 (1906) (in Russian)
-
(1906)
Rasprostranenie Zakona bol'Shih Chisel Na Velichiny, Zavisyaschie Drug Ot Druga
, vol.15
, pp. 135
-
-
Markov, A.A.1
-
3
-
-
0003871605
-
-
[English trans.: Extension of the limit theorems of probability theory to a sum of variables connected in a chain, reprinted in Appendix B of, Vol. 1, Markov Models (Dover Publications, New York)].
-
[English trans.: Extension of the limit theorems of probability theory to a sum of variables connected in a chain, reprinted in Appendix B of R. A. Howard, Dynamic Probabilistic Systems, Vol. 1, Markov Models (Dover Publications, New York, 2007)].
-
(2007)
Dynamic Probabilistic Systems
-
-
Howard, R.A.1
-
6
-
-
0004163930
-
-
(Elsevier-Academic Press, Amsterdam).
-
M. L. Mehta, Random Matrices (Elsevier-Academic Press, Amsterdam, 2004).
-
(2004)
Random Matrices
-
-
Mehta, M.L.1
-
7
-
-
77949683737
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.81.036213
-
D. L. Shepelyansky and O. V. Zhirov, Phys. Rev. E 81, 036213 (2010). PLEEE8 1539-3755 10.1103/PhysRevE.81.036213
-
(2010)
Phys. Rev. e
, vol.81
, pp. 036213
-
-
Shepelyansky, D.L.1
Zhirov, O.V.2
-
8
-
-
77954564189
-
-
EPJBFY 1434-6028 10.1140/epjb/e2010-00144-0
-
L. Ermann and D. L. Shepelyansky, Eur. Phys. J. B 75, 299 (2010). EPJBFY 1434-6028 10.1140/epjb/e2010-00144-0
-
(2010)
Eur. Phys. J. B
, vol.75
, pp. 299
-
-
Ermann, L.1
Shepelyansky, D.L.2
-
11
-
-
80755187542
-
-
1751-8113 10.1088/1751-8113/44/46/465101
-
K. M. Frahm, B. Georgeot, and D. L. Shepelyansky, J. Phys, A: Math. Theor. 44, 465101 (2011). 1751-8113 10.1088/1751-8113/44/46/465101
-
(2011)
A: Math. Theor.
, vol.44
, pp. 465101
-
-
Frahm, K.M.1
Georgeot, B.2
Shepelyansky, D.L.3
Phys, J.4
-
13
-
-
84868324153
-
-
EPJBFY 1434-6028 10.1140/epjb/e2012-30599-6
-
K. M. Frahm and D. L. Shepelyansky, Eur. Phys. J. B 85, 355 (2012). EPJBFY 1434-6028 10.1140/epjb/e2012-30599-6
-
(2012)
Eur. Phys. J. B
, vol.85
, pp. 355
-
-
Frahm, K.M.1
Shepelyansky, D.L.2
-
15
-
-
84892407342
-
-
EPJBFY 1434-6028 10.1140/epjb/e2013-40432-5
-
Y.-H. Eom, K. M. Frahm, A. Benczur, and D. L. Shepelyansky, Eur. Phys. J. B 86, 492 (2013). EPJBFY 1434-6028 10.1140/epjb/e2013-40432-5
-
(2013)
Eur. Phys. J. B
, vol.86
, pp. 492
-
-
Eom, Y.-H.1
Frahm, K.M.2
Benczur, A.3
Shepelyansky, D.L.4
-
16
-
-
0142077573
-
Topology of evolving networks: Local events and universality
-
DOI 10.1103/PhysRevLett.85.5234
-
R. Albert and A.-L. Barabási, Phys. Rev. Lett. 85, 5234 (2000). PRLTAO 0031-9007 10.1103/PhysRevLett.85.5234 (Pubitemid 32871817)
-
(2000)
Physical Review Letters
, vol.85
, Issue.24
, pp. 5234-5237
-
-
Albert, R.1
Barabasi, A.-L.2
-
17
-
-
84902002153
-
-
Web page of Physical Review.
-
Web page of Physical Review: http://publish.aps.org/.
-
-
-
-
18
-
-
0003454919
-
-
(SIAM, Washington, DC), Vol. II.
-
G. W. Stewart, Matrix Algorithms, Eigensystems (SIAM, Washington, DC, 2001), Vol. II.
-
(2001)
Matrix Algorithms, Eigensystems
-
-
Stewart, G.W.1
-
19
-
-
77954819505
-
-
EPJBFY 1434-6028 10.1140/epjb/e2010-00190-6
-
K. M. Frahm and D. L. Shepelyansky, Eur. Phys. J. B 76, 57 (2010). EPJBFY 1434-6028 10.1140/epjb/e2010-00190-6
-
(2010)
Eur. Phys. J. B
, vol.76
, pp. 57
-
-
Frahm, K.M.1
Shepelyansky, D.L.2
-
21
-
-
22844432359
-
-
(6),. PHTOAD 0031-9228 10.1063/1.1996475
-
S. Redner, Phys. Today 58 (6), 49 (2005). PHTOAD 0031-9228 10.1063/1.1996475
-
(2005)
Phys. Today
, vol.58
, pp. 49
-
-
Redner, S.1
-
22
-
-
33846293215
-
-
1751-1577 10.1016/j.joi.2006.06.001
-
P. Chen, H. Xie, S. Maslov, and S. Redner, J. Infometrics 1, 8 (2007). 1751-1577 10.1016/j.joi.2006.06.001
-
(2007)
J. Infometrics
, vol.1
, pp. 8
-
-
Chen, P.1
Xie, H.2
Maslov, S.3
Redner, S.4
-
23
-
-
71049166438
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.80.056103
-
F. Radicchi, S. Fortunato, B. Markines, and A. Vespignani, Phys. Rev. E 80, 056103 (2009). PLEEE8 1539-3755 10.1103/PhysRevE.80.056103
-
(2009)
Phys. Rev. e
, vol.80
, pp. 056103
-
-
Radicchi, F.1
Fortunato, S.2
Markines, B.3
Vespignani, A.4
-
24
-
-
80053064709
-
-
1932-6203 10.1371/journal.pone.0024926
-
Y.-H. Eom and S. Fortunato, PLoS ONE 6, e24926 (2011). 1932-6203 10.1371/journal.pone.0024926
-
(2011)
PLoS ONE
, vol.6
-
-
Eom, Y.-H.1
Fortunato, S.2
-
26
-
-
84902002154
-
-
http://www.eigenfactor.org/.
-
-
-
-
27
-
-
84902002155
-
-
arXiv:1003.5455 [cs.Se].
-
A. D. Chepelianskii, arXiv:1003.5455 [cs.Se] (2010).
-
(2010)
-
-
Chepelianskii, A.D.1
-
30
-
-
84902002145
-
-
This number depends on the exact time ordering which is used and which is not unique because many papers are published at the same time and the order between them is not specified. We have chosen a time ordering where between these papers, degenerate in publication time, the initial node order of the raw data is kept.
-
This number depends on the exact time ordering which is used and which is not unique because many papers are published at the same time and the order between them is not specified. We have chosen a time ordering where between these papers, degenerate in publication time, the initial node order of the raw data is kept.
-
-
-
-
31
-
-
84902002146
-
-
Note that some of the nonvanishing components of the iteration vector (Equation presented) may become very small, e.g., (Equation presented). In this context we count such components still as occupied despite their small size, and (Equation presented) is the number of nodes which can be reached from some arbitrary other node after (Equation presented) iterations with the matrix (Equation presented).
-
Note that some of the nonvanishing components of the iteration vector (Equation presented) may become very small, e.g., (Equation presented). In this context we count such components still as occupied despite their small size, and (Equation presented) is the number of nodes which can be reached from some arbitrary other node after (Equation presented) iterations with the matrix (Equation presented).
-
-
-
-
32
-
-
84902002147
-
-
the GMP development team.
-
T. Granlund and the GMP development team, http://gmplib.org/.
-
-
-
Granlund, T.1
-
33
-
-
84974003886
-
-
DUMJAO 0012-7094 10.1215/S0012-7094-90-06001-6
-
J. Sjöstrand, Duke Math. J. 60, 1 (1990). DUMJAO 0012-7094 10.1215/S0012-7094-90-06001-6
-
(1990)
Duke Math. J.
, vol.60
, pp. 1
-
-
Sjöstrand, J.1
-
34
-
-
34248399658
-
-
DUMJAO 0012-7094 10.1215/S0012-7094-07-13731-1
-
J. Sjöstrand and M. Zworski, Duke Math. J. 137, 381 (2007). DUMJAO 0012-7094 10.1215/S0012-7094-07-13731-1
-
(2007)
Duke Math. J.
, vol.137
, pp. 381
-
-
Sjöstrand, J.1
Zworski, M.2
-
35
-
-
33845774786
-
-
CMPHAY 0010-3616 10.1007/s00220-006-0131-0
-
S. Nonnenmacher and M. Zworski, Commun. Math. Phys. 269, 311 (2007). CMPHAY 0010-3616 10.1007/s00220-006-0131-0
-
(2007)
Commun. Math. Phys.
, vol.269
, pp. 311
-
-
Nonnenmacher, S.1
Zworski, M.2
-
37
-
-
24244444170
-
-
PHRVAO 0031-899X 10.1103/PhysRev.109.1492
-
P. W. Anderson, Phys. Rev. 109, 1492 (1958). PHRVAO 0031-899X 10.1103/PhysRev.109.1492
-
(1958)
Phys. Rev.
, vol.109
, pp. 1492
-
-
Anderson, P.W.1
-
39
-
-
33646977864
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.39.1167
-
D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977). PRLTAO 0031-9007 10.1103/PhysRevLett.39.1167
-
(1977)
Phys. Rev. Lett.
, vol.39
, pp. 1167
-
-
Thouless, D.J.1
-
40
-
-
26144433204
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.42.673
-
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). PRLTAO 0031-9007 10.1103/PhysRevLett.42.673
-
(1979)
Phys. Rev. Lett.
, vol.42
, pp. 673
-
-
Abrahams, E.1
Anderson, P.W.2
Licciardello, D.C.3
Ramakrishnan, T.V.4
-
41
-
-
84884874493
-
-
1932-6203 10.1371/journal.pone.0074554
-
Y.-H. Eom and D. L. Sepelyansky, PLoS ONE 8, e74554 (2013). 1932-6203 10.1371/journal.pone.0074554
-
(2013)
PLoS ONE
, vol.8
-
-
Eom, Y.-H.1
Sepelyansky, D.L.2
-
42
-
-
0001703129
-
-
JMAPAQ 0022-2488 10.1063/1.1704292
-
J. Ginibre, J. Math. Phys. Sci. 6, 440 (1965). JMAPAQ 0022-2488 10.1063/1.1704292
-
(1965)
J. Math. Phys. Sci.
, vol.6
, pp. 440
-
-
Ginibre, J.1
-
43
-
-
0000435159
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.60.1895;
-
H.-J. Sommers, A. Crisanti, H. Sompolinsky, and Y. Stein, Phys. Rev. Lett. 60, 1895 (1988) PRLTAO 0031-9007 10.1103/PhysRevLett.60.1895;
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 1895
-
-
Sommers, H.-J.1
Crisanti, A.2
Sompolinsky, H.3
Stein, Y.4
-
44
-
-
0001203841
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.67.941
-
N. Lehmann and H.-J. Sommers, Phys. Rev. Lett. 67, 941 (1991). PRLTAO 0031-9007 10.1103/PhysRevLett.67.941
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 941
-
-
Lehmann, N.1
Sommers, H.-J.2
-
45
-
-
84877353458
-
-
1932-6203 10.1371/journal.pone.0061519
-
V. Kandiah and D. L. Shepelyansky, PLoS ONE 8, e61519 (2013). 1932-6203 10.1371/journal.pone.0061519
-
(2013)
PLoS ONE
, vol.8
-
-
Kandiah, V.1
Shepelyansky, D.L.2
-
46
-
-
84902002148
-
-
In Ref. [19] a set of vectors without this prefactor was used, but this provided a representation matrix which is numerically unstable for a direct diagonalization. The prefactor (Equation presented) ensures that the representation matrix is numerically (rather) stable, and of course both matrices are mathematically related by a similarity transformation and have identical eigenvalues.
-
In Ref. [19] a set of vectors without this prefactor was used, but this provided a representation matrix which is numerically unstable for a direct diagonalization. The prefactor (Equation presented) ensures that the representation matrix is numerically (rather) stable, and of course both matrices are mathematically related by a similarity transformation and have identical eigenvalues.
-
-
-
|