메뉴 건너뛰기




Volumn 77, Issue , 2014, Pages 25-37

Fast approximate L∞ minimization: Speeding up robust regression

Author keywords

Face recognition; Least squares regression; Outlier removal; Robust regression

Indexed keywords

FACE RECOGNITION; REGRESSION ANALYSIS; STATISTICS;

EID: 84901921857     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2014.02.018     Document Type: Article
Times cited : (16)

References (42)
  • 3
    • 31644433509 scopus 로고    scopus 로고
    • Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling
    • DOI 10.1109/TPAMI.2006.46
    • S. Fidler, D. Skocaj, and A. Leonardis Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling IEEE Trans. Pattern Anal. Mach. Intell. 28 3 2006 337 350 (Pubitemid 43167906)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.3 , pp. 337-350
    • Fidler, S.1    Skocaj, D.2    Leonardis, A.3
  • 4
    • 31644433509 scopus 로고    scopus 로고
    • Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling
    • DOI 10.1109/TPAMI.2006.46
    • S. Fidler, D. Skocaj, and A. Leonardis Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling IEEE Trans. Pattern Anal. Mach. Intell. 28 3 2006 337 350 (Pubitemid 43167906)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.3 , pp. 337-350
    • Fidler, S.1    Skocaj, D.2    Leonardis, A.3
  • 5
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • M.A. Fischler, and R.C. Bolles Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography Commun. ACM 24 1981 381 395
    • (1981) Commun. ACM , vol.24 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 11
    • 0001033261 scopus 로고
    • Robust regression: Asymptotics, conjectures and monte carlo
    • P.J. Huber Robust regression: asymptotics, conjectures and monte carlo Ann. Math. Statist. 1 5 1973 799 821
    • (1973) Ann. Math. Statist. , vol.1 , Issue.5 , pp. 799-821
    • Huber, P.J.1
  • 13
    • 49749129645 scopus 로고    scopus 로고
    • High-breakdown robust multivariate methods
    • M. Hubert, P.J. Rousseeuw, and S.v. Aelst High-breakdown robust multivariate methods Statist. Sci. 23 1 2008 92 119
    • (2008) Statist. Sci. , vol.23 , Issue.1 , pp. 92-119
    • Hubert, M.1    Rousseeuw, P.J.2    Aelst, S.V.3
  • 14
    • 0001297461 scopus 로고
    • Nonparametric estimate of regression coefficients
    • J. Jureckova Nonparametric estimate of regression coefficients Ann. Math. Statist. 42 4 1971 1328 1338
    • (1971) Ann. Math. Statist. , vol.42 , Issue.4 , pp. 1328-1338
    • Jureckova, J.1
  • 16
    • 33745911320 scopus 로고    scopus 로고
    • Quasiconvex optimization for robust geometric reconstruction
    • DOI 10.1109/ICCV.2005.197, 1544828, Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
    • Ke, Q., Kanade, T., 2005. Quasiconvex optimization for robust geometric reconstruction. In: Proc. IEEE Conf. Computer Vision, Vol. 2, pp. 986-993. (Pubitemid 44042288)
    • (2005) Proceedings of the IEEE International Conference on Computer Vision , vol.II , pp. 986-993
    • Ke, Q.1    Kanade, T.2
  • 21
    • 30344453380 scopus 로고    scopus 로고
    • Selected topics in column generation
    • DOI 10.1287/opre.1050.0234
    • M.E. Lübbecke, and J. Desrosiers Selected topics in column generation Oper. Res. 53 6 2005 1007 1023 (Pubitemid 43061815)
    • (2005) Operations Research , vol.53 , Issue.6 , pp. 1007-1023
    • Lubbecke, M.E.1    Desrosiers, J.2
  • 24
    • 84855997019 scopus 로고    scopus 로고
    • CVXGEN: A code generator for embedded convex optimization
    • J. Mattingley, and S. Boyd CVXGEN: a code generator for embedded convex optimization Optim. Eng. 13 2012 1 27
    • (2012) Optim. Eng. , vol.13 , pp. 1-27
    • Mattingley, J.1    Boyd, S.2
  • 26
    • 80052762868 scopus 로고    scopus 로고
    • Robust regression for face recognition
    • I. Naseem, R. Togneri, and M. Bennamoun Robust regression for face recognition Pattern Recognit. 45 1 2012 104 118
    • (2012) Pattern Recognit. , vol.45 , Issue.1 , pp. 104-118
    • Naseem, I.1    Togneri, R.2    Bennamoun, M.3
  • 30
    • 84862897363 scopus 로고    scopus 로고
    • Robust regression using data partitioning and M-estimation
    • Y. Park, D. Kim, and S. Kim Robust regression using data partitioning and M-estimation Commun. Stat. - Simul. Comput. 41 8 2012 1282 1300
    • (2012) Commun. Stat. - Simul. Comput. , vol.41 , Issue.8 , pp. 1282-1300
    • Park, Y.1    Kim, D.2    Kim, S.3
  • 32
    • 80054910703 scopus 로고    scopus 로고
    • Secure and robust iris recognition using random projections and sparse representations
    • J. Pillai, V. Patel, R. Chellappa, and N. Ratha Secure and robust iris recognition using random projections and sparse representations IEEE Trans. Pattern Anal. Mach. Intell. 33 9 2011 1877 1893
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.9 , pp. 1877-1893
    • Pillai, J.1    Patel, V.2    Chellappa, R.3    Ratha, N.4
  • 38
    • 0033296299 scopus 로고    scopus 로고
    • Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • J.F. Sturm Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones Optim. Methods Softw. 11-12 1999 625 653
    • (1999) Optim. Methods Softw. , vol.11-12 , pp. 625-653
    • Sturm, J.F.1
  • 41
    • 0001742386 scopus 로고
    • High breakdown-point and high efficiency robust estimates for regression
    • V.J. Yohai High breakdown-point and high efficiency robust estimates for regression Ann. Stat. 1987 642 656
    • (1987) Ann. Stat. , pp. 642-656
    • Yohai, V.J.1
  • 42
    • 84863011302 scopus 로고    scopus 로고
    • Sparse representation or collaborative representation: Which helps face recognition?
    • Zhang, L., Yang, M., Feng, X., 2011. Sparse representation or collaborative representation: which helps face recognition? In: Proc. Int. Conf. Computer Vision, pp. 471-478.
    • (2011) Proc. Int. Conf. Computer Vision , pp. 471-478
    • Zhang, L.1    Yang, M.2    Feng, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.