메뉴 건너뛰기




Volumn 54, Issue , 2013, Pages 86-102

GeneSIS: A GA-based fuzzy segmentation algorithm for remote sensing images

Author keywords

Fuzzy output SVM; Genetic algorithm (GA) based image; Hyperspectral images; Segmentation; Sequential object extraction; Spectral spatial classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); EXTRACTION; FEATURE EXTRACTION; GENETIC ALGORITHMS; HYPERSPECTRAL IMAGING; IMAGE PROCESSING; IMAGE RECONSTRUCTION; ITERATIVE METHODS; PIXELS; REMOTE SENSING; SPACE OPTICS; SPECTROSCOPY;

EID: 84901778079     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2013.07.018     Document Type: Article
Times cited : (31)

References (35)
  • 1
    • 84901764372 scopus 로고    scopus 로고
    • Data Set (original files)
    • AVIRIS NW Indiana's Indian Pines 1992. Data Set. ftp://ftp.ecn.purdue. edu/ biehl/Multispec/92AV3C (original files)
    • AVIRIS NW Indiana's Indian Pines 1992
  • 2
    • 84901809682 scopus 로고    scopus 로고
    • (ground truth)
    • ftp://ftp.ecn.purdue.edu/biehl/PC-Multispec/ThyFiles.zip (ground truth).
  • 3
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution segmentation - An optimization approach for high quality multi-scale image segmentation
    • Wichmann-Verlag, Heidelberg
    • M. Baatz, A. Schäpe, Multiresolution Segmentation - An Optimization Approach for High Quality Multi-Scale Image Segmentation. Angewandte Geographische Informationsverarbeitung XII, Wichmann-Verlag, Heidelberg, 2000. pp. 12-23.
    • (2000) Angewandte Geographische Informationsverarbeitung XII , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 5
    • 0000442474 scopus 로고
    • The morphological approach to segmentation: The watershed transformation
    • S. Beucher, F. Meyer, The morphological approach to segmentation: the watershed transformation, Mathematical Morphology in Image Processing 10 (1993)433-481.
    • (1993) Mathematical Morphology in Image Processing , vol.10 , pp. 433-481
    • Beucher, S.1    Meyer, F.2
  • 8
    • 0030190583 scopus 로고    scopus 로고
    • Robust image segmentation using genetic algorithm with a fuzzy measure
    • D.N. Chun, H.S. Yang, Robust image segmentation using genetic algorithm with a fuzzy measure, Pattern Recognition 29 (7) (1996) 1195-1211.
    • (1996) Pattern Recognition , vol.29 , Issue.7 , pp. 1195-1211
    • Chun, D.N.1    Yang, H.S.2
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (1995) 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 77956395027 scopus 로고    scopus 로고
    • Supervised image segmentation using watershed transform, fuzzy classification and evolutionary computation
    • S. Derivaux, G. Forestier, C. Wemmert, S. Lefevre, Supervised image segmentation using watershed transform, fuzzy classification and evolutionary computation, Pattern Recognition Letters 31 (15) (2010) 2364-2374.
    • (2010) Pattern Recognition Letters , vol.31 , Issue.15 , pp. 2364-2374
    • Derivaux, S.1    Forestier, G.2    Wemmert, C.3    Lefevre, S.4
  • 13
    • 17644395280 scopus 로고    scopus 로고
    • Seeded region growing: An extensive and comparative study
    • J. Fan, G. Zeng, M. Body, M.-S. Hacid, Seeded region growing: an extensive and comparative study, Pattern Recognition Letters 26 (8) (2005) 1139-1156.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.8 , pp. 1139-1156
    • Fan, J.1    Zeng, G.2    Body, M.3    Hacid, M.-S.4
  • 15
    • 0018729995 scopus 로고
    • A survey on image segmentation
    • K.S. Fu, J.K. Mui, A survey on image segmentation, Pattern Recognition 13 (1981) 3-16.
    • (1981) Pattern Recognition , vol.13 , pp. 3-16
    • Fu, K.S.1    Mui, J.K.2
  • 16
    • 2642575753 scopus 로고    scopus 로고
    • Quadtree-based genetic algorithm and its applications to computer vision
    • M. Gong, Y.H. Yang, Quadtree-based genetic algorithm and its applications to computer vision, Pattern Recognition 37 (8) (2004) 1723-1733.
    • (2004) Pattern Recognition , vol.37 , Issue.8 , pp. 1723-1733
    • Gong, M.1    Yang, Y.H.2
  • 17
    • 0000982905 scopus 로고    scopus 로고
    • Multi-stage genetic fuzzy systems based on the iterative rule learning approach
    • A. González, F. Herrera, Multi-stage genetic fuzzy systems based on the iterative rule learning approach, Mathware and Soft Computing 4 (3) (1997) 233-249.
    • (1997) Mathware and Soft Computing , vol.4 , Issue.3 , pp. 233-249
    • González, A.1    Herrera, F.2
  • 19
    • 70350153353 scopus 로고    scopus 로고
    • An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery
    • X. Huang, L. Zhang, An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing 46 (12) (2008) 4173-4185.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.12 , pp. 4173-4185
    • Huang, X.1    Zhang, L.2
  • 21
    • 33646708051 scopus 로고    scopus 로고
    • A multiagent system approach for image segmentation using genetic algorithms and external optimization heuristics
    • K. Melkemi, M. Batouche, S. Foufou, A multiagent system approach for image segmentation using genetic algorithms and external optimization heuristics, Pattern Recognition Letters 27 (2006) 1230-1238.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 1230-1238
    • Melkemi, K.1    Batouche, M.2    Foufou, S.3
  • 22
    • 45849109197 scopus 로고    scopus 로고
    • Decision fusion of GA self-organizing neuro-fuzzy multilayered classifiers for land cover classification using textural and spectral features
    • N. Mitrakis, C. Topaloglou, T. Alexandridis, J. Theocharis, G. Zalidis, Decision fusion of GA self-organizing neuro-fuzzy multilayered classifiers for land cover classification using textural and spectral features, IEEE Transactions on Geoscience and Remote Sensing 46 (7) (2008) 2137-2152.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.7 , pp. 2137-2152
    • Mitrakis, N.1    Topaloglou, C.2    Alexandridis, T.3    Theocharis, J.4    Zalidis, G.5
  • 23
    • 84867865876 scopus 로고    scopus 로고
    • A fast SVM-based wrapper feature selection method driven by a fuzzy complementary criterion
    • S. Moustakidis, J. Theocharis, A fast SVM-based wrapper feature selection method driven by a fuzzy complementary criterion, Pattern Analysis and Applications 15 (4) (2012) 379-397.
    • (2012) Pattern Analysis and Applications , vol.15 , Issue.4 , pp. 379-397
    • Moustakidis, S.1    Theocharis, J.2
  • 26
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Y. Tarabalka, J.A. Benediktsson, J. Chanussot, Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques, IEEE Transactions on Geoscience and Remote Sensing 47 (8) (2009) 2973-2987.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 27
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Y. Tarabalka, J. Chanussot, J.A. Benediktsson, Segmentation and classification of hyperspectral images using watershed transformation, Pattern Recognition 43 (7) (2010) 2367-2379.
    • (2010) Pattern Recognition , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 28
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automaticallyselected markers
    • Y. Tarabalka, J. Chanussot, J.A. Benediktsson, Segmentation and classification of hyperspectral images using minimum spanning forest grown from automaticallyselected markers, IEEE Transactions on Systems, Man, and Cybernetics 40 (5) (2010) 1267-1279.
    • (2010) IEEE Transactions on Systems, Man, and Cybernetics , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 30
    • 80955168763 scopus 로고    scopus 로고
    • Best merge region growing with integrated probabilistic classification for hyperspectral imagery
    • Y. Tarabalka, J.C. Tilton, Best merge region growing with integrated probabilistic classification for hyperspectral imagery, International Geoscience and Remote Sensing, Symposium, 2011b, pp. 3724-3727.
    • (2011) International Geoscience and Remote Sensing, Symposium , pp. 3724-3727
    • Tarabalka, Y.1    Tilton, J.C.2
  • 33
    • 0030145389 scopus 로고    scopus 로고
    • Fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation
    • J. Udupa, S. Samarasekera, Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation, Graphical Models and Image Processing 58 (3) (1996) 246-261.
    • (1996) Graphical Models and Image Processing , vol.58 , Issue.3 , pp. 246-261
    • Udupa, J.1    Samarasekera, S.2
  • 34
    • 78651064261 scopus 로고    scopus 로고
    • Comparison of merging orders and pruning strategies for binary partition tree in hyperspectral data
    • S. Valero, P. Salembier, J. Chanussot, Comparison of merging orders and pruning strategies for binary partition tree in hyperspectral data, IEEE International Conference on Image Processing, 2010, pp. 2565-2568.
    • (2010) IEEE International Conference on Image Processing , pp. 2565-2568
    • Valero, S.1    Salembier, P.2    Chanussot, J.3
  • 35
    • 77957977279 scopus 로고    scopus 로고
    • Decision fusion on supervised and unsupervised classifiers for hyperspectral imagery
    • H. Yang, Q. Du, Decision fusion on supervised and unsupervised classifiers for hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters 7 (4) (2010) 875-879.
    • (2010) IEEE Geoscience and Remote Sensing Letters , vol.7 , Issue.4 , pp. 875-879
    • Yang, H.1    Du, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.