메뉴 건너뛰기




Volumn , Issue , 2014, Pages 472-483

Distributed and interactive cube exploration

Author keywords

[No Author keywords available]

Indexed keywords

ENGINEERING; INDUSTRIAL ENGINEERING;

EID: 84901777212     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2014.6816674     Document Type: Conference Paper
Times cited : (128)

References (57)
  • 1
    • 79957809015 scopus 로고    scopus 로고
    • HadoopDB: An architectural hybrid of mapreduce and dbms technologies for analytical workloads
    • A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin. HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. VLDB, 2009.
    • (2009) VLDB
    • Abouzeid, A.1    Bajda-Pawlikowski, K.2    Abadi, D.3    Silberschatz, A.4    Rasin, A.5
  • 3
    • 84901769346 scopus 로고    scopus 로고
    • OLAP query evaluation in a database cluster: A performance study on intra-query parallelism
    • F. Akal, K. Böhm, and H. Schek. OLAP Query Evaluation in a Database Cluster: A Performance Study on Intra-Query Parallelism. ADBIS, 2002.
    • (2002) ADBIS
    • Akal, F.1    Böhm, K.2    Schek, H.3
  • 5
    • 33749585668 scopus 로고    scopus 로고
    • MonetDB/x100: Hyper-pipelining query execution
    • P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution. CIDR, 2005.
    • (2005) CIDR
    • Boncz, P.A.1    Zukowski, M.2    Nes, N.3
  • 8
    • 84860560293 scopus 로고    scopus 로고
    • SCOPE: Easy and efficient parallel processing of massive data sets
    • R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, et al. SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. VLDB, 2008.
    • (2008) VLDB
    • Chaiken, R.1    Jenkins, B.2    Larson, P.3    Ramsey, B.4
  • 9
    • 79957807756 scopus 로고    scopus 로고
    • Accurate latency estimation in a distributed event processing system
    • B. Chandramouli, J. Goldstein, R. Barga, et al. Accurate Latency Estimation in a Distributed Event Processing System. ICDE, 2011.
    • (2011) ICDE
    • Chandramouli, B.1    Goldstein, J.2    Barga, R.3
  • 10
    • 34547483963 scopus 로고    scopus 로고
    • Optimized stratified sampling for approximate query processing
    • S. Chaudhuri, G. Das, and V. Narasayya. Optimized Stratified Sampling for Approximate Query Processing. TODS, 2007.
    • (2007) TODS
    • Chaudhuri, S.1    Das, G.2    Narasayya, V.3
  • 11
    • 33749607729 scopus 로고    scopus 로고
    • CgmOLAP: Efficient parallel generation and querying of terabyte size rolap data cubes
    • Y. Chen, A. Rau-Chaplin, et al. cgmOLAP: Efficient Parallel Generation and Querying of Terabyte Size ROLAP Data Cubes. ICDE, 2006.
    • (2006) ICDE
    • Chen, Y.1    Rau-Chaplin, A.2
  • 12
    • 1842506415 scopus 로고    scopus 로고
    • Space-efficient cubes for olap range-sum queries
    • S.-J. Chun, C.-W. Chung, and S.-L. Lee. Space-Efficient Cubes for OLAP Range-Sum Queries. DSS, 2004.
    • (2004) DSS
    • Chun, S.-J.1    Chung, C.-W.2    Lee, S.-L.3
  • 14
  • 15
    • 84901788468 scopus 로고    scopus 로고
    • Interactive manipulation visualization analysis of large sets of multidimensional time series in health informatics
    • A. Dubrawski, M. Sabhnani, et al. Interactive Manipulation, Visualization Analysis of Large Sets of Multidimensional Time Series in Health Informatics. INFORMS, 2008.
    • (2008) INFORMS
    • Dubrawski, A.1    Sabhnani, M.2
  • 16
    • 84901812843 scopus 로고    scopus 로고
    • Forecasting the data cube: A model configuration advisor for multi-dimensional data sets
    • U. Fischer et al. Forecasting the Data Cube: A Model Configuration Advisor for Multi-Dimensional Data Sets. CITY, 2013.
    • (2013) CITY
    • Fischer, U.1
  • 17
    • 14344263350 scopus 로고    scopus 로고
    • Learning bayesian network structure from massive datasets
    • N. Friedman et al. Learning Bayesian Network Structure from Massive Datasets. UAI, 1999.
    • (1999) UAI
    • Friedman, N.1
  • 18
    • 84947663114 scopus 로고
    • Main memory database systems: An overview
    • H. Garcia-Molina and K. Salem. Main Memory Database Systems: An Overview. TKDE, 1992.
    • (1992) TKDE
    • Garcia-Molina, H.1    Salem, K.2
  • 20
    • 84873173544 scopus 로고    scopus 로고
    • Processing a trillion cells per mouse click
    • A. Hall et al. Processing a Trillion Cells Per Mouse Click. VLDB, 2012.
    • (2012) VLDB
    • Hall, A.1
  • 21
    • 34250667148 scopus 로고    scopus 로고
    • VizQL: A language for query analysis and visualization
    • P. Hanrahan. VizQL: A Language for Query, Analysis and Visualization. SIGMOD, 2006.
    • (2006) SIGMOD
    • Hanrahan, P.1
  • 24
    • 0031169625 scopus 로고    scopus 로고
    • Online aggregation
    • J. Hellerstein et al. Online Aggregation. SIGMOD, 1997.
    • (1997) SIGMOD
    • Hellerstein, J.1
  • 25
    • 84901777491 scopus 로고    scopus 로고
    • Pack indexing for time-constrained in-memory query processing
    • T. Jäkel et al. Pack Indexing for Time-Constrained In-Memory Query Processing. BTW, 2013.
    • (2013) BTW
    • Jäkel, T.1
  • 27
    • 0002857487 scopus 로고    scopus 로고
    • Metarule-guided mining of association rules using data cubes
    • M. Kamber et al. Metarule-Guided Mining of Association Rules using Data Cubes. KDD, 1997.
    • (1997) KDD
    • Kamber, M.1
  • 28
  • 29
    • 79957859672 scopus 로고    scopus 로고
    • HyPer: A hybrid oltp&olap main memory database system based on virtual memory snapshots
    • A. Kemper et al. HyPer: A Hybrid OLTP&OLAP Main Memory Database System Based on Virtual Memory Snapshots. ICDE, 2011.
    • (2011) ICDE
    • Kemper, A.1
  • 30
    • 84901783103 scopus 로고    scopus 로고
    • Session-based browsing for more effective query reuse
    • N. Khoussainova et al. Session-Based Browsing for More Effective Query Reuse. SSDBM, 2011.
    • (2011) SSDBM
    • Khoussainova, N.1
  • 31
    • 77952247763 scopus 로고    scopus 로고
    • Augmenting olap exploration with dynamic advanced analytics
    • B. Leonhardi, B. Mitschang, R. Pulido, et al. Augmenting OLAP Exploration with Dynamic Advanced Analytics. EDBT, 2010.
    • (2010) EDBT
    • Leonhardi, B.1    Mitschang, B.2    Pulido, R.3
  • 32
    • 57149135463 scopus 로고    scopus 로고
    • Sampling cube: A framework for statistical olap over sampling data
    • X. Li, J. Han, Z. Yin, J.-G. Lee, et al. Sampling Cube: A Framework for Statistical OLAP over Sampling Data. SIGMOD, 2008.
    • (2008) SIGMOD
    • Li, X.1    Han, J.2    Yin, Z.3    Lee, J.-G.4
  • 33
    • 84901780402 scopus 로고    scopus 로고
    • A text cube approach to human social and cultural behavior in the twitter stream
    • X. Liu et al. A Text Cube Approach to Human, Social and Cultural Behavior in the Twitter Stream. SBP, 2013.
    • (2013) SBP
    • Liu, X.1
  • 35
    • 79958258284 scopus 로고    scopus 로고
    • Dremel: Interactive analysis of web-scale datasets
    • S. Melnik, A. Gubarev, J. Long, et al. Dremel: Interactive Analysis of Web-Scale Datasets. VLDB, 2010.
    • (2010) VLDB
    • Melnik, S.1    Gubarev, A.2    Long, J.3
  • 36
    • 0014380830 scopus 로고
    • Response time in man-computer conversational transactions
    • R. Miller. Response Time in Man-Computer Conversational Transactions. FJCC, 1968.
    • (1968) FJCC
    • Miller, R.1
  • 37
    • 79957860992 scopus 로고    scopus 로고
    • Distributed cube materialization on holistic measures
    • A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Distributed Cube Materialization on Holistic Measures. ICDE, 2011.
    • (2011) ICDE
    • Nandi, A.1    Yu, C.2    Bohannon, P.3    Ramakrishnan, R.4
  • 38
    • 71349084465 scopus 로고    scopus 로고
    • Statistical structures for internetscale data management
    • N. Ntarmos, P. Triantafillou, et al. Statistical Structures for InternetScale Data Management. VLDB, 2009.
    • (2009) VLDB
    • Ntarmos, N.1    Triantafillou, P.2
  • 40
    • 55349148888 scopus 로고    scopus 로고
    • Pig latin: A not-so-foreign language for data processing
    • C. Olston, B. Reed, et al. Pig Latin: A Not-So-Foreign Language for Data Processing. SIGMOD, 2008.
    • (2008) SIGMOD
    • Olston, C.1    Reed, B.2
  • 42
    • 84855574528 scopus 로고    scopus 로고
    • Computing closed skycubes
    • C. Raïssi et al. Computing Closed Skycubes. VLDB, 2010.
    • (2010) VLDB
    • Raïssi, C.1
  • 43
    • 84901812579 scopus 로고    scopus 로고
    • Dynamic pre-fetching of views based on user-access patterns in an olap system
    • K. Ramachandran, B. Shah, and V. V. Raghavan. Dynamic Pre-Fetching of Views Based on User-Access Patterns in an OLAP System. SIGMOD, 2005.
    • (2005) SIGMOD
    • Ramachandran, K.1    Shah, B.2    Raghavan, V.V.3
  • 44
    • 24644437822 scopus 로고    scopus 로고
    • PROMISE: Predicting query behavior to enable predictive caching strategies for olap systems
    • C. Sapia. PROMISE: Predicting Query Behavior to Enable Predictive Caching Strategies for OLAP Systems. DaWaK, 2000.
    • (2000) DaWaK
    • Sapia, C.1
  • 45
    • 0000994889 scopus 로고    scopus 로고
    • Discovery-driven exploration of olap data cubes
    • S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-Driven Exploration of OLAP Data Cubes. EDBT, 1998.
    • (1998) EDBT
    • Sarawagi, S.1    Agrawal, R.2    Megiddo, N.3
  • 46
    • 85011018823 scopus 로고    scopus 로고
    • I3: Intelligent, interactive investigation of olap data cubes
    • S. Sarawagi and G. Sathe. i3: Intelligent, Interactive Investigation of OLAP Data Cubes. SIGMOD, 2000.
    • (2000) SIGMOD
    • Sarawagi, S.1    Sathe, G.2
  • 47
    • 0021483756 scopus 로고
    • Response time and display rate in human performance with computers
    • B. Shneiderman. Response Time and Display Rate in Human Performance with Computers. CSUR, 1984.
    • (1984) CSUR
    • Shneiderman, B.1
  • 48
    • 84901762515 scopus 로고
    • Sequentiality and prefetching
    • A. Smith. Sequentiality and Prefetching. TODS, 1978.
    • (1978) TODS
    • Smith, A.1
  • 50
    • 84985009916 scopus 로고    scopus 로고
    • EventCube: Multi-dimensional search and mining of structured and text data
    • F. Tao et al. EventCube: Multi-Dimensional Search and Mining of Structured and Text Data. KDD, 2013.
    • (2013) KDD
    • Tao, F.1
  • 51
    • 84873200296 scopus 로고    scopus 로고
    • SCOUT: Prefetching for latent structure following queries
    • F. Tauheed et al. SCOUT: Prefetching for Latent Structure Following Queries. VLDB, 2012.
    • (2012) VLDB
    • Tauheed, F.1
  • 52
    • 77952775707 scopus 로고    scopus 로고
    • Hive-A petabyte scale data warehouse using hadoop
    • A. Thusoo, J. Sarma, N. Jain, et al. Hive-A Petabyte Scale Data Warehouse using Hadoop. ICDE, 2010.
    • (2010) ICDE
    • Thusoo, A.1    Sarma, J.2    Jain, N.3
  • 54
    • 83055186892 scopus 로고    scopus 로고
    • Effective stratification for low selectivity queries on deep web data sources
    • F. Wang and G. Agrawal. Effective Stratification for Low Selectivity Queries on Deep Web Data Sources. CIKM, 2011.
    • (2011) CIKM
    • Wang, F.1    Agrawal, G.2
  • 55
    • 84881344929 scopus 로고    scopus 로고
    • Stratification driven placement of complex data: A framework for distributed data analytics
    • Y. Wang, S. Parthasarathy, and P. Sadayappan. Stratification Driven Placement of Complex Data: A Framework for Distributed Data Analytics. ICDE, 2013.
    • (2013) ICDE
    • Wang, Y.1    Parthasarathy, S.2    Sadayappan, P.3
  • 56
    • 51149118028 scopus 로고    scopus 로고
    • Confidence bounds for sampling-based group by estimates
    • F. Xu, C. Jermaine, and A. Dobra. Confidence Bounds for Sampling-based Group by Estimates. TODS, 2008.
    • (2008) TODS
    • Xu, F.1    Jermaine, C.2    Dobra, A.3
  • 57
    • 35949002427 scopus 로고    scopus 로고
    • Toward a deeper understanding of the role of interaction in information visualization
    • J. Yi et al. Toward a Deeper Understanding of the Role of Interaction in Information Visualization. VCG, 2007.
    • (2007) VCG
    • Yi, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.