메뉴 건너뛰기




Volumn 36, Issue 14, 2014, Pages 1604-1611

Identification and modeling of a yeast fermentation bioreactor using hybrid particle swarm optimization-artificial neural networks

Author keywords

identification; neural network; particle swarm optimization; yeast fermentation bioreactor

Indexed keywords

BACKPROPAGATION ALGORITHMS; BIOCONVERSION; BIOREACTORS; IDENTIFICATION (CONTROL SYSTEMS); NEURAL NETWORKS; NONLINEAR SYSTEMS; PETROLEUM ENGINEERING; YEAST;

EID: 84901450048     PISSN: 15567036     EISSN: 15567230     Source Type: Journal    
DOI: 10.1080/15567036.2011.592903     Document Type: Article
Times cited : (9)

References (21)
  • 1
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical process systems
    • Bhat, N. V., and, McAvoy, T. J. 1990. Use of neural nets for dynamic modeling and control of chemical process systems. Comput. Chem. Eng. 14: 573-585.
    • (1990) Comput. Chem. Eng. , vol.14 , pp. 573-585
    • Bhat, N.V.1    McAvoy, T.J.2
  • 2
    • 0001693640 scopus 로고
    • Identification of nonlinear dynamic processes with unknown and variable dead time using an internal recurrent neural network
    • Cheng, Y., Karjala, T. W., and, Himmelblau, D. M. 1995. Identification of nonlinear dynamic processes with unknown and variable dead time using an internal recurrent neural network. Ind. Eng. Chem. Res. 34: 1735-1742.
    • (1995) Ind. Eng. Chem. Res. , vol.34 , pp. 1735-1742
    • Cheng, Y.1    Karjala, T.W.2    Himmelblau, D.M.3
  • 4
    • 0029535737 scopus 로고
    • IEEE International Conference on Neural Network, Perth, Australia
    • Eberhart, R. C., and, Kennedy, J. 1995a. Particle swarm optimization. IEEE International Conference on Neural Network, Perth, Australia, pp. 1942-1948.
    • (1995) Particle Swarm Optimization , pp. 1942-1948
    • Eberhart, R.C.1    Kennedy, J.2
  • 6
    • 0033666935 scopus 로고    scopus 로고
    • Comparing inertia weights and constriction factors in particle swarm optimization
    • Eberhart, R. C., and, Shi, Y. 2000. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of 2000 Congress on Evolutionary Computing, Vol. 1, pp. 84-88.
    • (2000) Proceedings of 2000 Congress on Evolutionary Computing , vol.1 , pp. 84-88
    • Eberhart, R.C.1    Shi, Y.2
  • 7
  • 8
    • 0026849113 scopus 로고
    • Process control via artificial neural networks and reinforcement learning
    • Hoskins, J. C., and, Himmelblau, D. M. 1992. Process control via artificial neural networks and reinforcement learning. Comput. Chem. Eng. 16: 241-251.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 241-251
    • Hoskins, J.C.1    Himmelblau, D.M.2
  • 9
    • 79953719959 scopus 로고    scopus 로고
    • Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir
    • Irani, R., and, Nasimi, R. 2011. Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir. J. Expert Sys. Applic. 38: 9862-9866.
    • (2011) J. Expert Sys. Applic. , vol.38 , pp. 9862-9866
    • Irani, R.1    Nasimi, R.2
  • 10
    • 0027657894 scopus 로고
    • Predictive control of quality in a batch manufacturing process using artificial neural network models
    • Joseph, B., and, Hanratty, F. W. 1993. Predictive control of quality in a batch manufacturing process using artificial neural network models. Ind. Eng. Chem. Res. 32: 1951-1961.
    • (1993) Ind. Eng. Chem. Res. , vol.32 , pp. 1951-1961
    • Joseph, B.1    Hanratty, F.W.2
  • 11
    • 0026849111 scopus 로고
    • Combining pattern classification and assumption based techniques for process fault diagnosis
    • Kavuri, S. N., and, Venkatasubramanian, V. 1992. Combining pattern classification and assumption based techniques for process fault diagnosis. Comput. Chem. Eng. 16: 299-312.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 299-312
    • Kavuri, S.N.1    Venkatasubramanian, V.2
  • 13
    • 33846893475 scopus 로고    scopus 로고
    • Model based control of a yeast fermentation bioreactors using optimally designed artificial neural networks
    • Nagy, Z. K. 2007. Model based control of a yeast fermentation bioreactors using optimally designed artificial neural networks. Chem. Eng. J. 127: 95-109.
    • (2007) Chem. Eng. J. , vol.127 , pp. 95-109
    • Nagy, Z.K.1
  • 17
    • 0019342693 scopus 로고
    • Mathematical models and the design of biochemical reactors
    • Roels, J. A. 1982. Mathematical models and the design of biochemical reactors. J. Chem. Technol. Biotechnol. 32: 59-72.
    • (1982) J. Chem. Technol. Biotechnol. , vol.32 , pp. 59-72
    • Roels, J.A.1
  • 19
    • 0020138537 scopus 로고
    • Metabolic-heat relation for aerobic yeast respiration and fermentation
    • Volesky, B., Yerushalmi, L., and, Luong, J. H. T. 1982. Metabolic-heat relation for aerobic yeast respiration and fermentation. J. Chem. Technol. Biotechnol. 32: 650-659.
    • (1982) J. Chem. Technol. Biotechnol. , vol.32 , pp. 650-659
    • Volesky, B.1    Yerushalmi, L.2    Luong, J.H.T.3
  • 20
    • 0026849114 scopus 로고
    • Knowledge-based interpretation of sensor patterns
    • Whiteley, J. R., and, Davis, J. F. 1992. Knowledge-based interpretation of sensor patterns. Comput. Chem. Eng. 16: 329-346.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 329-346
    • Whiteley, J.R.1    Davis, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.