메뉴 건너뛰기




Volumn 8443 LNAI, Issue PART 1, 2014, Pages 581-593

Privacy-preserving collaborative anomaly detection for participatory sensing

Author keywords

Anomaly detection; Collaborative learning; Horizontally partitioned data; Participatory sensing; Privacy preserving data mining

Indexed keywords

BAYESIAN NETWORKS; DATA MINING; INDEPENDENT COMPONENT ANALYSIS; MATRIX ALGEBRA; POPULATION STATISTICS;

EID: 84901265057     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-06608-0_48     Document Type: Conference Paper
Times cited : (11)

References (24)
  • 1
    • 81255170112 scopus 로고    scopus 로고
    • A Distributed Solution for Privacy Preserving Outlier Detection
    • Dung, L.T., Bao, H.T.: A Distributed Solution for Privacy Preserving Outlier Detection. In: Third International Conference on KSE, pp. 26-31 (2011)
    • (2011) Third International Conference on KSE , pp. 26-31
    • Dung, L.T.1    Bao, H.T.2
  • 2
    • 19544394594 scopus 로고    scopus 로고
    • Privacy-preserving outlier detection
    • Vaidya, J., Clifton, C.: Privacy-preserving outlier detection. In: IEEE ICDM, pp. 233-240 (2004)
    • (2004) IEEE ICDM , pp. 233-240
    • Vaidya, J.1    Clifton, C.2
  • 3
    • 79551683372 scopus 로고    scopus 로고
    • Privacy-preserving outlier detection through random nonlinear data distortion
    • Bhaduri, K., Stefanski, M.D., Srivastava, A.N.: Privacy-preserving outlier detection through random nonlinear data distortion. IEEE TSMC, Part B 41, 260-272 (2011)
    • (2011) IEEE TSMC , vol.41 , Issue.PART B , pp. 260-272
    • Bhaduri, K.1    Stefanski, M.D.2    Srivastava, A.N.3
  • 5
    • 31344447750 scopus 로고    scopus 로고
    • Random projection-based multiplicative data perturbation for privacy preserving distributed data mining
    • Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE TKDE 18(1), 92-106 (2006)
    • (2006) IEEE TKDE , vol.18 , Issue.1 , pp. 92-106
    • Liu, K.1    Kargupta, H.2    Ryan, J.3
  • 6
    • 74449085562 scopus 로고    scopus 로고
    • Privacy-preserving multiparty collaborative mining with geometric data perturbation
    • Chen, K., Liu, L.: Privacy-preserving multiparty collaborative mining with geometric data perturbation. IEEE TPDS 20(12), 1764-1776 (2009)
    • (2009) IEEE TPDS , vol.20 , Issue.12 , pp. 1764-1776
    • Chen, K.1    Liu, L.2
  • 7
    • 62649103793 scopus 로고    scopus 로고
    • Privacy-preserving classification of horizontally partitioned data via random kernels
    • Mangasarian, O.L., Wild, E.W.: Privacy-preserving classification of horizontally partitioned data via random kernels. In: Proceedings of DMIN (2007)
    • Proceedings of DMIN (2007)
    • Mangasarian, O.L.1    Wild, E.W.2
  • 8
    • 79251640709 scopus 로고    scopus 로고
    • Privacy preserving Back-propagation neural network learning over arbitrarily partitioned data
    • Bansal, A., Chen, T., Zhong, S.: Privacy preserving Back-propagation neural network learning over arbitrarily partitioned data. Neural Computing and Applications 20, 143-150 (2010)
    • (2010) Neural Computing and Applications , vol.20 , pp. 143-150
    • Bansal, A.1    Chen, T.2    Zhong, S.3
  • 9
    • 84878020410 scopus 로고    scopus 로고
    • A privacy-preserving algorithm for distributed training of neural network ensembles
    • Zhang, Y., Zhong, S.: A privacy-preserving algorithm for distributed training of neural network ensembles. Neural Computing and Applications 22, 269-282 (2012)
    • (2012) Neural Computing and Applications , vol.22 , pp. 269-282
    • Zhang, Y.1    Zhong, S.2
  • 10
    • 0041783510 scopus 로고    scopus 로고
    • Privacy-preserving data mining
    • Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM SIGMOD Record 29(2), 439-450 (2000)
    • (2000) ACM SIGMOD Record , vol.29 , Issue.2 , pp. 439-450
    • Agrawal, R.1    Srikant, R.2
  • 11
    • 0034827009 scopus 로고    scopus 로고
    • On the design and quantification of privacy preserving data mining algorithms
    • Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: Proceedings of ACM PODS, pp. 247-255 (2001)
    • (2001) Proceedings of ACM PODS , pp. 247-255
    • Agrawal, D.1    Aggarwal, C.C.2
  • 12
    • 78149340011 scopus 로고    scopus 로고
    • On the privacy preserving properties of random data perturbation technique
    • Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random data perturbation technique. In: IEEE ICDM, pp. 99-106 (2003)
    • (2003) IEEE ICDM , pp. 99-106
    • Kargupta, H.1    Datta, S.2    Wang, Q.3    Sivakumar, K.4
  • 13
    • 29844458622 scopus 로고    scopus 로고
    • Deriving private information from randomized data
    • Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data. In: Proceedings of ACM SIGMOD, pp. 37-48 (2005)
    • (2005) Proceedings of ACM SIGMOD , pp. 37-48
    • Huang, Z.1    Du, W.2    Chen, B.3
  • 16
    • 77954631038 scopus 로고    scopus 로고
    • A survey of attack techniques on privacy-preserving data perturbation methods
    • Springer
    • Liu, K., Giannella, C., Kargupta, H.: A survey of attack techniques on privacy-preserving data perturbation methods. In: Privacy-Preserving Data Mining. Springer (2008)
    • (2008) Privacy-Preserving Data Mining
    • Liu, K.1    Giannella, C.2    Kargupta, H.3
  • 17
    • 82555168400 scopus 로고    scopus 로고
    • Effective reconstruction of data perturbed by random projections
    • Sang, Y., Shen, H., Tian, H.: Effective reconstruction of data perturbed by random projections. IEEE Transactions on Computers 61(1), 101-117 (2012)
    • (2012) IEEE Transactions on Computers , vol.61 , Issue.1 , pp. 101-117
    • Sang, Y.1    Shen, H.2    Tian, H.3
  • 18
    • 84873449020 scopus 로고    scopus 로고
    • Cloud-enabled privacy-preserving collaborative learning for mobile sensing
    • Liu, B., Jiang, Y., Sha, F., Govindan, R.: Cloud-enabled privacy-preserving collaborative learning for mobile sensing. In: Proceedings of SenSys, pp. 57-70 (2012)
    • (2012) Proceedings of SenSys , pp. 57-70
    • Liu, B.1    Jiang, Y.2    Sha, F.3    Govindan, R.4
  • 19
    • 84901274714 scopus 로고    scopus 로고
    • Breaching euclidean distance-preserving data perturbation using few known inputs
    • Giannella, C.R., Liu, K., Kargupta, H.: Breaching euclidean distance-preserving data perturbation using few known inputs. Data & Knowledge Engineering (2012)
    • (2012) Data & Knowledge Engineering
    • Giannella, C.R.1    Liu, K.2    Kargupta, H.3
  • 20
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533-536 (1986)
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 21
    • 33750293582 scopus 로고    scopus 로고
    • An attacker's view of distance preserving maps for privacy preserving data mining
    • Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006 Springer, Heidelberg
    • Liu, K., Giannella, C., Kargupta, H.: An attacker's view of distance preserving maps for privacy preserving data mining. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297-308. Springer, Heidelberg (2006)
    • (2006) LNCS (LNAI) , vol.4213 , pp. 297-308
    • Liu, K.1    Giannella, C.2    Kargupta, H.3
  • 22
    • 38049165825 scopus 로고    scopus 로고
    • Deriving private information from arbitrarily projected data
    • Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007 Springer, Heidelberg
    • Guo, S., Wu, X.: Deriving private information from arbitrarily projected data. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 84-95. Springer, Heidelberg (2007)
    • (2007) LNCS (LNAI) , vol.4426 , pp. 84-95
    • Guo, S.1    Wu, X.2
  • 23
    • 0004516853 scopus 로고
    • Establishing the positive definiteness of the sample covariance matrix
    • Dykstra, R.L.: Establishing the positive definiteness of the sample covariance matrix. The Annals of Mathematical Statistics 41(6), 2153-2154 (1970)
    • (1970) The Annals of Mathematical Statistics , vol.41 , Issue.6 , pp. 2153-2154
    • Dykstra, R.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.