메뉴 건너뛰기




Volumn 6, Issue 2, 2014, Pages 253-263

A Meta-Cognitive Learning Algorithm for an Extreme Learning Machine Classifier

Author keywords

Classification; Extreme learning machine; Hinge loss error function; Meta cognition; Self regulatory learning mechanism

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURONS;

EID: 84901200630     PISSN: 18669956     EISSN: 18669964     Source Type: Journal    
DOI: 10.1007/s12559-013-9223-2     Document Type: Article
Times cited : (64)

References (46)
  • 1
    • 0001071040 scopus 로고    scopus 로고
    • A resource allocation network for function interpolation
    • Platt JC. A resource allocation network for function interpolation. Neural Comput. 1997;2(2): 213-25.
    • (1997) Neural Comput , vol.2 , Issue.2 , pp. 213-225
    • Platt, J.C.1
  • 2
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • Yingwei L, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput. 1997;9(2): 461-78.
    • (1997) Neural Comput , vol.9 , Issue.2 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 3
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm
    • Yingwei L, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Trans Neural Netw. 1998;9(2): 308-18.
    • (1998) IEEE Trans Neural Netw , vol.9 , Issue.2 , pp. 308-318
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 4
    • 10044221078 scopus 로고    scopus 로고
    • An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks
    • Huang GB, Saratchandran P, Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Syst Man Cybern Part B Cybern. 2004;34(6): 2284-92.
    • (2004) IEEE Trans Syst Man Cybern Part B Cybern , vol.34 , Issue.6 , pp. 2284-2292
    • Huang, G.B.1    Saratchandran, P.2    Sundararajan, N.3
  • 5
    • 40649123279 scopus 로고    scopus 로고
    • A sequential multi-category classifier using radial basis function networks
    • Suresh S, Sundararajan N, Saratchandran P. A sequential multi-category classifier using radial basis function networks. Neurocomputing. 2008;71(7-9): 1345-58.
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1345-1358
    • Suresh, S.1    Sundararajan, N.2    Saratchandran, P.3
  • 6
    • 78649975292 scopus 로고    scopus 로고
    • A sequential learning algorithm for self-adaptive resource allocation network classifier
    • Suresh S, Dong K, Kim HJ. A sequential learning algorithm for self-adaptive resource allocation network classifier. Neurocomputing. 2010;73(16-18): 3012-9.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3012-3019
    • Suresh, S.1    Dong, K.2    Kim, H.J.3
  • 7
    • 84856317703 scopus 로고    scopus 로고
    • Meta-cognitive neural network for classification problems in a sequential learning framework
    • Babu GS, Suresh S. Meta-cognitive neural network for classification problems in a sequential learning framework. Neurocomputing. 2012;81: 86-96.
    • (2012) Neurocomputing , vol.81 , pp. 86-96
    • Babu, G.S.1    Suresh, S.2
  • 8
    • 33645588429 scopus 로고    scopus 로고
    • Extreme learning machine with randomly assigned RBF kernels
    • Huang GB, Siew CK. Extreme learning machine with randomly assigned RBF kernels. Int J Inf Technol. 2005;11(1): 16-24.
    • (2005) Int J Inf Technol. , vol.11 , Issue.1 , pp. 16-24
    • Huang, G.B.1    Siew, C.K.2
  • 10
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate on-line sequential learning algorithm for feedforward networks
    • Liang N-Y, Huang GB, Saratchandran P, Sundararajan N. A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw. 2006;17(6): 1411-23.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.-Y.1    Huang, G.B.2    Saratchandran, P.3    Sundararajan, N.4
  • 11
    • 85008039450 scopus 로고    scopus 로고
    • Online sequential fuzzy extreme learning machine for function approximation and classification problems
    • Rong HJ, Huang GB, Sundararajan N, Saratchandran P. Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern Part B Cybern. 2009;39(4): 1067-72.
    • (2009) IEEE Trans Syst Man Cybern Part B Cybern , vol.39 , Issue.4 , pp. 1067-1072
    • Rong, H.J.1    Huang, G.B.2    Sundararajan, N.3    Saratchandran, P.4
  • 12
    • 84862779843 scopus 로고    scopus 로고
    • Online sequential extreme learning machine with forgetting mechanism
    • Zhao J, Wang Z, Park DS. Online sequential extreme learning machine with forgetting mechanism. Neurocomputing. 2012;87: 79-89.
    • (2012) Neurocomputing , vol.87 , pp. 79-89
    • Zhao, J.1    Wang, Z.2    Park, D.S.3
  • 13
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4): 879-92.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 15
    • 80051597055 scopus 로고    scopus 로고
    • An OS-ELM based distributed ensemble classification framework in p2p networks
    • Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in p2p networks. Neurocomputing. 2011;74(16): 2438-43.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2438-2443
    • Sun, Y.1    Yuan, Y.2    Wang, G.3
  • 17
    • 58549103087 scopus 로고    scopus 로고
    • No-reference image quality assessment using modified extreme learning machine classifier
    • Suresh S, Babu RV, Kim HJ. No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Comput. 2009;9(2): 541-52.
    • (2009) Appl Soft Comput , vol.9 , Issue.2 , pp. 541-552
    • Suresh, S.1    Babu, R.V.2    Kim, H.J.3
  • 18
    • 84870245922 scopus 로고    scopus 로고
    • Circular-ELM for the reduced-reference assessment of perceived image quality
    • Decherchi S, Gastaldo P, Zunino R, Cambria E, Redi J. Circular-ELM for the reduced-reference assessment of perceived image quality. Neurocomputing. 2013;102: 78-89.
    • (2013) Neurocomputing , vol.102 , pp. 78-89
    • Decherchi, S.1    Gastaldo, P.2    Zunino, R.3    Cambria, E.4    Redi, J.5
  • 19
    • 75749090733 scopus 로고    scopus 로고
    • Online adaptive radial basis function networks for robust object tracking
    • Babu RV, Suresh S, Makur A. Online adaptive radial basis function networks for robust object tracking. Comput Vis Image Underst. 2010;114(3): 297-10.
    • (2010) Comput Vis Image Underst , vol.114 , Issue.3 , pp. 297-310
    • Babu, R.V.1    Suresh, S.2    Makur, A.3
  • 20
    • 55949118135 scopus 로고    scopus 로고
    • A protein secondary structure prediction framework based on the extreme learning machine
    • Wang G, Zhao Y, Wang DD. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing. 2008;72(1-3): 262-8.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 262-268
    • Wang, G.1    Zhao, Y.2    Wang, D.D.3
  • 21
    • 77957870624 scopus 로고    scopus 로고
    • Performance enhancement of extreme learning machine for multi-category sparse data classification problems
    • Suresh S, Saraswathi S, Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Eng Appl Artif Intell. 2010;23(7): 149-57.
    • (2010) Eng Appl Artif Intell , vol.23 , Issue.7 , pp. 149-157
    • Suresh, S.1    Saraswathi, S.2    Sundararajan, N.3
  • 22
    • 79551661137 scopus 로고    scopus 로고
    • ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented
    • Saraswathi S, Sundaram S, Sundararajan N, Zimmermann M, Nilsen-Hamilton M. ICGA-PSO-ELM approach for accurate multiclass cancer classification resulting in reduced gene sets in which genes encoding secreted proteins are highly represented. IEEE/ACM Trans Comput Biol Bioinform. 2011;8(2): 452-63.
    • (2011) IEEE/ACM Trans Comput Biol Bioinform , vol.8 , Issue.2 , pp. 452-463
    • Saraswathi, S.1    Sundaram, S.2    Sundararajan, N.3    Zimmermann, M.4    Nilsen-Hamilton, M.5
  • 23
    • 50849133381 scopus 로고    scopus 로고
    • Metacognitive knowledge monitoring and self-regulated learning: academic success and reflections on learning
    • Isaacson R, Fujita F. Metacognitive knowledge monitoring and self-regulated learning: academic success and reflections on learning. J Scholarsh Teach Learn. 2006;6(1): 39-55.
    • (2006) J Scholarsh Teach Learn , vol.6 , Issue.1 , pp. 39-55
    • Isaacson, R.1    Fujita, F.2
  • 25
    • 84860235672 scopus 로고    scopus 로고
    • Meta-cognitive learning in fully complex-valued radial basis function network
    • Savitha R, Suresh S, Sundararajan N. Meta-cognitive learning in fully complex-valued radial basis function network. Neural Comput. 2012;24(5): 1297-28.
    • (2012) Neural Comput , vol.24 , Issue.5 , pp. 1297-1328
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 26
    • 84861781199 scopus 로고    scopus 로고
    • A meta-cognitive learning algorithm for a fully complex-valued relaxation network
    • Savitha R, Suresh S, Sundararajan N. A meta-cognitive learning algorithm for a fully complex-valued relaxation network. Neural Netw. 2012;32: 209-18.
    • (2012) Neural Netw , vol.32 , pp. 209-218
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 27
    • 84869475733 scopus 로고    scopus 로고
    • Meta-cognitive RBF network and its projection based learning algorithm for classification problems
    • Babu GS, Suresh S. Meta-cognitive RBF network and its projection based learning algorithm for classification problems. Appl Soft Comput. 2013;13(1): 654-66.
    • (2013) Appl Soft Comput , vol.13 , Issue.1 , pp. 654-666
    • Babu, G.S.1    Suresh, S.2
  • 28
    • 84883690846 scopus 로고    scopus 로고
    • Sequential projection-based metacognitive learning in a radial basis function network for classification problems
    • Babu GS, Suresh S. Sequential projection-based metacognitive learning in a radial basis function network for classification problems. IEEE Trans Neural Netw. 2012;24(2): 194-206.
    • (2012) IEEE Trans Neural Netw , vol.24 , Issue.2 , pp. 194-206
    • Babu, G.S.1    Suresh, S.2
  • 30
    • 82455199144 scopus 로고    scopus 로고
    • Parameter estimation of q-Gaussian Radial Basis Functions Neural Networks with a Hybrid Algorithm for binary classification
    • Fernndez-Navarro F, Hervs-Martnez C, Gutirrez PA, Pea-Barragn JM, Lpez-Granados F. Parameter estimation of q-Gaussian Radial Basis Functions Neural Networks with a Hybrid Algorithm for binary classification. Neurocomputing. 2012;75: 123-34.
    • (2012) Neurocomputing , vol.75 , pp. 123-134
    • Fernndez-Navarro, F.1    Hervs-Martnez, C.2    Gutirrez, P.A.3    Pea-Barragn, J.M.4    Lpez-Granados, F.5
  • 31
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann Stat. 2003;32(1): 56-85.
    • (2003) Ann Stat , vol.32 , Issue.1 , pp. 56-85
    • Zhang, T.1
  • 32
    • 41749093196 scopus 로고    scopus 로고
    • Risk-sensitive loss functions for sparse multi-category classification problems
    • Suresh S, Sundararajan N, Saratchandran P. Risk-sensitive loss functions for sparse multi-category classification problems. Inf Sci. 2008;178(12): 2621-38.
    • (2008) Inf Sci , vol.178 , Issue.12 , pp. 2621-2638
    • Suresh, S.1    Sundararajan, N.2    Saratchandran, P.3
  • 33
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Sciences, University of California, Irvine
    • Blake C, Merz C. UCI repository of machine learning databases. Department of Information and Computer Sciences, University of California, Irvine, [http://archive. ics. uci. edu/ml/] 1998.
    • (1998) UCI repository of machine learning databases
    • Blake, C.1    Merz, C.2
  • 34
    • 27944457938 scopus 로고    scopus 로고
    • Metacognition in computation: a selected research review
    • Cox MT. Metacognition in computation: a selected research review. Artif Intell. 2005;169(2): 104-41.
    • (2005) Artif Intell , vol.169 , Issue.2 , pp. 104-141
    • Cox, M.T.1
  • 35
    • 79960139729 scopus 로고    scopus 로고
    • A sequential learning algorithm for complex-valued resource allocation network-CSRAN
    • Suresh S, Savitha R, Sundararajan N. A sequential learning algorithm for complex-valued resource allocation network-CSRAN. IEEE Trans Neural Netw. 2011;22(7): 1061-72.
    • (2011) IEEE Trans Neural Netw , vol.22 , Issue.7 , pp. 1061-1072
    • Suresh, S.1    Savitha, R.2    Sundararajan, N.3
  • 36
    • 70249094707 scopus 로고    scopus 로고
    • A fully complex-valued radial basis function network and its learning algorithm
    • Savitha R, Suresh S, Sundararajan N. A fully complex-valued radial basis function network and its learning algorithm. Int J Neural Syst. 2009;19(4): 253-67.
    • (2009) Int J Neural Syst , vol.19 , Issue.4 , pp. 253-267
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3
  • 37
    • 34247242721 scopus 로고    scopus 로고
    • An augmented extended Kalman filter algorithm for complex-valued recurrent neural networks
    • Goh SL, Mandic DP. An augmented extended Kalman filter algorithm for complex-valued recurrent neural networks. Neural Comput. 2007;19(4): 1039-55.
    • (2007) Neural Comput , vol.19 , Issue.4 , pp. 1039-1055
    • Goh, S.L.1    Mandic, D.P.2
  • 40
    • 84865089661 scopus 로고    scopus 로고
    • Human action recognition using meta-cognitive neuro-fuzzy inference system
    • Subramanian K, Suresh S. Human action recognition using meta-cognitive neuro-fuzzy inference system. Proc Int Jt Conf Neural Netw. 2012;22(6): 1250028-1-15.
    • (2012) Proc Int Jt Conf Neural Netw , vol.22 , Issue.6 , pp. 1-15
    • Subramanian, K.1    Suresh, S.2
  • 41
    • 84865864111 scopus 로고    scopus 로고
    • A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system
    • Subramanian K, Suresh S. A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system. Appl Soft Comput. 2012;12(11): 3603-14.
    • (2012) Appl Soft Comput , vol.12 , Issue.11 , pp. 3603-3614
    • Subramanian, K.1    Suresh, S.2
  • 42
    • 34547514836 scopus 로고    scopus 로고
    • A radial basis function and semantic learning space based composite learning approach to image retrieval
    • Shkurko K, Qi X. A radial basis function and semantic learning space based composite learning approach to image retrieval. Proc ICASSP IEEE Int Conf Acoust Speech Signal Process. 2007;1: 945-8.
    • (2007) Proc ICASSP IEEE Int Conf Acoust Speech Signal Process , vol.1 , pp. 945-948
    • Shkurko, K.1    Qi, X.2
  • 43
    • 33846509497 scopus 로고    scopus 로고
    • A reconstruction approach to ct with cauchy rbfs network
    • ISNN2004, Lecture Notes in Computer Science
    • Zhang J, Li H. A reconstruction approach to ct with cauchy rbfs network. Advances in Neural Networks: ISNN2004, Lecture Notes in Computer Science 2004; 3174: 234-6.
    • (2004) Advances in Neural Networks , vol.3174 , pp. 234-236
    • Zhang, J.1    Li, H.2
  • 44
    • 0031889404 scopus 로고    scopus 로고
    • Complexity reduction in radial basis function (RBF) networks by using radial B-spline functions
    • Saranli A, Baykal B. Complexity reduction in radial basis function (RBF) networks by using radial B-spline functions. Neurocomputing. 1998;18(1-3): 183-94.
    • (1998) Neurocomputing , vol.18 , Issue.1-3 , pp. 183-194
    • Saranli, A.1    Baykal, B.2
  • 45
    • 34250781245 scopus 로고    scopus 로고
    • Generalized LM-inverse of a matrix augmented by a column vector
    • Udwadia FE, Phohomsiri P. Generalized LM-inverse of a matrix augmented by a column vector. Appl Math Comput. 2007;190: 999-06.
    • (2007) Appl Math Comput , vol.190 , pp. 999-1006
    • Udwadia, F.E.1    Phohomsiri, P.2
  • 46
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • (software available at)
    • Chang C.-C, Lin C.-J. LIBSVM: a library for support vector machines (software available at /http://www. csie. ntu. edu. tw/cjlin/libsvms). ACM Trans Intell Syst Technol 2011;2(27): 1-27.
    • (2011) ACM Trans Intell Syst Technol , vol.2 , Issue.27 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.