메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 315-324

Technologies for extending zinc-air battery's cyclelife: A review

Author keywords

Air electrode; Cyclelife; Influence factors; Solutions; Zinc electrode; Zinc air batteries

Indexed keywords

ELECTRODES; ELECTROLYTES; ENERGY STORAGE; HEARING AIDS; SOLUTIONS; ZINC;

EID: 84901028745     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2014.04.095     Document Type: Review
Times cited : (418)

References (117)
  • 1
    • 41849116011 scopus 로고    scopus 로고
    • Energy storage systems - characteristics and comparisons
    • Ibrahim H., Ilinca A., Perron J. Energy storage systems - characteristics and comparisons. Renew Sustain Energy Rev 2008, 12(5):1221-1250.
    • (2008) Renew Sustain Energy Rev , vol.12 , Issue.5 , pp. 1221-1250
    • Ibrahim, H.1    Ilinca, A.2    Perron, J.3
  • 2
    • 84857999516 scopus 로고    scopus 로고
    • Environmental consequences of the use of batteries in low carbon systems: the impact of battery production
    • McManus M.C. Environmental consequences of the use of batteries in low carbon systems: the impact of battery production. Appl Energy 2012, 93:288-295.
    • (2012) Appl Energy , vol.93 , pp. 288-295
    • McManus, M.C.1
  • 3
    • 81555207951 scopus 로고    scopus 로고
    • Electrical energy storage for the grid: a battery of choices
    • Dunn B., Kamath H., Tarascon J. Electrical energy storage for the grid: a battery of choices. Science 2011, 334(6058):928-935.
    • (2011) Science , vol.334 , Issue.6058 , pp. 928-935
    • Dunn, B.1    Kamath, H.2    Tarascon, J.3
  • 4
    • 80054713472 scopus 로고    scopus 로고
    • Tecno-economic assessment of an off-grid PV-powered community kitchen for developing regions
    • Dufo-López R., Zubi G., Fracastoro G.V. Tecno-economic assessment of an off-grid PV-powered community kitchen for developing regions. Appl Energy 2012, 91(1):255-262.
    • (2012) Appl Energy , vol.91 , Issue.1 , pp. 255-262
    • Dufo-López, R.1    Zubi, G.2    Fracastoro, G.V.3
  • 5
    • 64249151091 scopus 로고    scopus 로고
    • Overview of current and future energy storage technologies for electric power applications
    • Hadjipaschalis I., Poullikkas A., Efthimiou V. Overview of current and future energy storage technologies for electric power applications. Renew Sustain Energy Rev 2009, 13(6):1513-1522.
    • (2009) Renew Sustain Energy Rev , vol.13 , Issue.6 , pp. 1513-1522
    • Hadjipaschalis, I.1    Poullikkas, A.2    Efthimiou, V.3
  • 6
    • 84901032323 scopus 로고    scopus 로고
    • Handbook of batteries. New York
    • Linden D, Reddy TB. Handbook of batteries. New York; 2002.
    • (2002)
    • Linden, D.1    Reddy, T.B.2
  • 8
    • 84886843220 scopus 로고    scopus 로고
    • Economic viability of energy storage systems based on price arbitrage potential in real-time US electricity markets
    • Bradbury K., Pratson L., Patiño-Echeverri D. Economic viability of energy storage systems based on price arbitrage potential in real-time US electricity markets. Appl Energy 2014, 114:512-519.
    • (2014) Appl Energy , vol.114 , pp. 512-519
    • Bradbury, K.1    Pratson, L.2    Patiño-Echeverri, D.3
  • 9
    • 80052263188 scopus 로고    scopus 로고
    • Modeling storage and demand management in power distribution grids
    • Schroeder A. Modeling storage and demand management in power distribution grids. Appl Energy 2011, 88(12):4700-4712.
    • (2011) Appl Energy , vol.88 , Issue.12 , pp. 4700-4712
    • Schroeder, A.1
  • 11
    • 33847294275 scopus 로고    scopus 로고
    • A regenerative zinc-air fuel cell
    • Smedley S.I., Zhang X.G. A regenerative zinc-air fuel cell. J Power Sources 2007, 165(2):897-904.
    • (2007) J Power Sources , vol.165 , Issue.2 , pp. 897-904
    • Smedley, S.I.1    Zhang, X.G.2
  • 12
    • 0000598420 scopus 로고
    • The mechanism of the dendritic electrocrystallization of zinc
    • Diggle J.W., Despic A.R., Bockris J. The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 1969, 116(11):1503-1514.
    • (1969) J Electrochem Soc , vol.116 , Issue.11 , pp. 1503-1514
    • Diggle, J.W.1    Despic, A.R.2    Bockris, J.3
  • 13
    • 0009915608 scopus 로고
    • The electrolytic growth of dendrites from ionic solutions
    • Barton J.L., Bockris J. The electrolytic growth of dendrites from ionic solutions. Proc Roy Soc Lond. Ser A. Math Phys Sci 1962, 268(1335):485-505.
    • (1962) Proc Roy Soc Lond. Ser A. Math Phys Sci , vol.268 , Issue.1335 , pp. 485-505
    • Barton, J.L.1    Bockris, J.2
  • 14
    • 79959523049 scopus 로고    scopus 로고
    • Morphology control of electrodeposited zinc from alkaline zincate solutions for rechargeable zinc air batteries
    • Shaigan N., Qu W., Takeda T. Morphology control of electrodeposited zinc from alkaline zincate solutions for rechargeable zinc air batteries. ECS Trans 2010, 28(32):35-44.
    • (2010) ECS Trans , vol.28 , Issue.32 , pp. 35-44
    • Shaigan, N.1    Qu, W.2    Takeda, T.3
  • 15
    • 0039800275 scopus 로고
    • The effect of electrolyte flow on the morphology of zinc electrodeposited from aqueous alkaline solution containing zincate ions
    • Naybour R.D. The effect of electrolyte flow on the morphology of zinc electrodeposited from aqueous alkaline solution containing zincate ions. J Electrochem Soc 1969, 116(4):520-524.
    • (1969) J Electrochem Soc , vol.116 , Issue.4 , pp. 520-524
    • Naybour, R.D.1
  • 16
    • 0015475928 scopus 로고
    • Zinc electrode shape change in secondary cells
    • McBreen J. Zinc electrode shape change in secondary cells. J Electrochem Soc 1972, 119(12):1620-1628.
    • (1972) J Electrochem Soc , vol.119 , Issue.12 , pp. 1620-1628
    • McBreen, J.1
  • 17
    • 0017022562 scopus 로고
    • Engineering analysis of shape change in zinc secondary electrodes I. Theoretical
    • Choi K.W., Bennion D.N., Newman J. Engineering analysis of shape change in zinc secondary electrodes I. Theoretical. J Electrochem Soc 1976, 123(11):1616-1627.
    • (1976) J Electrochem Soc , vol.123 , Issue.11 , pp. 1616-1627
    • Choi, K.W.1    Bennion, D.N.2    Newman, J.3
  • 18
    • 0017016816 scopus 로고
    • Engineering analysis of shape change in zinc secondary electrodes II. Experimental
    • Choi K.W., et al. Engineering analysis of shape change in zinc secondary electrodes II. Experimental. J Electrochem Soc 1976, 123(11):1628-1637.
    • (1976) J Electrochem Soc , vol.123 , Issue.11 , pp. 1628-1637
    • Choi, K.W.1
  • 19
    • 79959534045 scopus 로고    scopus 로고
    • Development of a rechargeable zinc-air battery
    • Toussaint G., et al. Development of a rechargeable zinc-air battery. ECS Trans 2010, 28(32):25-34.
    • (2010) ECS Trans , vol.28 , Issue.32 , pp. 25-34
    • Toussaint, G.1
  • 20
    • 84878597285 scopus 로고    scopus 로고
    • Advanced zinc-air batteries based on high-performance hybrid electrocatalysts
    • Li Y., et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat Commun 2013, 4:1805.
    • (2013) Nat Commun , vol.4 , pp. 1805
    • Li, Y.1
  • 22
    • 84887901467 scopus 로고    scopus 로고
    • High performance zinc air fuel cell stack
    • Pei P., et al. High performance zinc air fuel cell stack. J Power Sources 2014, 249:13-20.
    • (2014) J Power Sources , vol.249 , pp. 13-20
    • Pei, P.1
  • 23
    • 69949100626 scopus 로고    scopus 로고
    • Synthesis of zinc oxide by zinc-air system
    • Yap C.K., et al. Synthesis of zinc oxide by zinc-air system. J Alloys Compd 2009, 484(1):934-938.
    • (2009) J Alloys Compd , vol.484 , Issue.1 , pp. 934-938
    • Yap, C.K.1
  • 24
    • 84859578898 scopus 로고    scopus 로고
    • The effect of binder and electrolyte on the performance of thin zinc-air battery
    • Hilder M., Winther-Jensen B., Clark N.B. The effect of binder and electrolyte on the performance of thin zinc-air battery. Electrochim Acta 2012, 69:308-314.
    • (2012) Electrochim Acta , vol.69 , pp. 308-314
    • Hilder, M.1    Winther-Jensen, B.2    Clark, N.B.3
  • 25
    • 33947610726 scopus 로고    scopus 로고
    • Fibrous zinc anodes for high power batteries
    • Zhang X.G. Fibrous zinc anodes for high power batteries. J Power Sources 2006, 163(1):591-597.
    • (2006) J Power Sources , vol.163 , Issue.1 , pp. 591-597
    • Zhang, X.G.1
  • 26
    • 33751240480 scopus 로고    scopus 로고
    • Preliminary comparative studies of zinc and zinc oxide electrodes on corrosion reaction and reversible reaction for zinc/air fuel cells
    • Lee C.W., et al. Preliminary comparative studies of zinc and zinc oxide electrodes on corrosion reaction and reversible reaction for zinc/air fuel cells. Electrochim Acta 2006, 52(4):1588-1591.
    • (2006) Electrochim Acta , vol.52 , Issue.4 , pp. 1588-1591
    • Lee, C.W.1
  • 27
    • 84901032317 scopus 로고
    • Zinc electrode and rechargeable zinc-air battery.
    • Ross Jr. PN. Zinc electrode and rechargeable zinc-air battery. Google Patents; 1989.
    • (1989) Google Patents
    • Ross Jr., P.N.1
  • 28
    • 77953914293 scopus 로고    scopus 로고
    • The anodic behavior of planar and porous zinc electrodes in alkaline electrolyte
    • Minakshi M., Appadoo D., Martin D.E. The anodic behavior of planar and porous zinc electrodes in alkaline electrolyte. Electrochem Solid-State Lett 2010, 13(7):A77-A80.
    • (2010) Electrochem Solid-State Lett , vol.13 , Issue.7
    • Minakshi, M.1    Appadoo, D.2    Martin, D.E.3
  • 29
    • 77649224547 scopus 로고    scopus 로고
    • Zinc as an energy carrier for energy conversion and storage
    • Zhang G.X. Zinc as an energy carrier for energy conversion and storage. ECS Trans 2009, 16(34):47-59.
    • (2009) ECS Trans , vol.16 , Issue.34 , pp. 47-59
    • Zhang, G.X.1
  • 30
    • 84875723993 scopus 로고    scopus 로고
    • Effect of adding carbon black to a porous zinc anode in a zinc-air battery
    • Masri M.N., Mohamad A.A. Effect of adding carbon black to a porous zinc anode in a zinc-air battery. J Electrochem Soc 2013, 160(4):A715-A721.
    • (2013) J Electrochem Soc , vol.160 , Issue.4
    • Masri, M.N.1    Mohamad, A.A.2
  • 31
    • 0026106549 scopus 로고
    • The secondary alkaline zinc electrode
    • McLarnon F.R., Cairns E.J. The secondary alkaline zinc electrode. J Electrochem Soc 1991, 138(2):645-656.
    • (1991) J Electrochem Soc , vol.138 , Issue.2 , pp. 645-656
    • McLarnon, F.R.1    Cairns, E.J.2
  • 32
    • 0032155490 scopus 로고    scopus 로고
    • Optimized zinc electrode for the rechargeable zinc-air battery
    • Müller S., Holzer F., Haas O. Optimized zinc electrode for the rechargeable zinc-air battery. J Appl Electrochem 1998, 28(9):895-898.
    • (1998) J Appl Electrochem , vol.28 , Issue.9 , pp. 895-898
    • Müller, S.1    Holzer, F.2    Haas, O.3
  • 33
    • 4243203753 scopus 로고
    • Passivation of zinc in concentrated alkaline solution-I: characteristics of active dissolution prior to passivation
    • Baugh L.M., Higginson A. Passivation of zinc in concentrated alkaline solution-I: characteristics of active dissolution prior to passivation. Electrochim Acta 1985, 30(9):1163-1172.
    • (1985) Electrochim Acta , vol.30 , Issue.9 , pp. 1163-1172
    • Baugh, L.M.1    Higginson, A.2
  • 34
    • 0004879404 scopus 로고
    • Passivation of zinc in concentrated alkaline solution-II: role of various experimental factors and the distinction between the solid-state and dissolution-precipitation mechanisms
    • Baugh L.M., Baikie A.R. Passivation of zinc in concentrated alkaline solution-II: role of various experimental factors and the distinction between the solid-state and dissolution-precipitation mechanisms. Electrochim Acta 1985, 30(9):1173-1183.
    • (1985) Electrochim Acta , vol.30 , Issue.9 , pp. 1173-1183
    • Baugh, L.M.1    Baikie, A.R.2
  • 35
    • 84901032318 scopus 로고
    • Technology base research on zinc/air battery systems.
    • Final report, Pinnacle Research Inst., Cupertino, CA, USA
    • Sierra Alcazar HB, Nguyen PD, Pinoli AA. Technology base research on zinc/air battery systems. In: Final report, Pinnacle Research Inst., Cupertino, CA, USA; 1987.
    • (1987)
    • Sierra Alcazar, H.B.1    Nguyen, P.D.2    Pinoli, A.A.3
  • 36
    • 0021623134 scopus 로고
    • Corrosion of zinc electrode mixtures in alkaline media
    • Binder L., Kordesch K. Corrosion of zinc electrode mixtures in alkaline media. J Electroanal Chem Interf Electrochem 1984, 180(1):495-510.
    • (1984) J Electroanal Chem Interf Electrochem , vol.180 , Issue.1 , pp. 495-510
    • Binder, L.1    Kordesch, K.2
  • 37
    • 25144509567 scopus 로고    scopus 로고
    • Development of ways to diminish corrosion of zinc electrode
    • Devyatkina T.I., Gun'Ko Y.L., Mikhalenko M.G. Development of ways to diminish corrosion of zinc electrode. Russ J Appl Chem 2001, 74(7):1122-1125.
    • (2001) Russ J Appl Chem , vol.74 , Issue.7 , pp. 1122-1125
    • Devyatkina, T.I.1    Gun'Ko, Y.L.2    Mikhalenko, M.G.3
  • 38
    • 33748959868 scopus 로고    scopus 로고
    • Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery
    • Lee C.W., et al. Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery. J Power Sources 2006, 160(2):1436-1441.
    • (2006) J Power Sources , vol.160 , Issue.2 , pp. 1436-1441
    • Lee, C.W.1
  • 39
    • 0037433648 scopus 로고    scopus 로고
    • Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors
    • Ein-Eli Y., Auinat M., Starosvetsky D. Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors. J Power Sources 2003, 114(2):330-337.
    • (2003) J Power Sources , vol.114 , Issue.2 , pp. 330-337
    • Ein-Eli, Y.1    Auinat, M.2    Starosvetsky, D.3
  • 40
    • 33748081454 scopus 로고    scopus 로고
    • Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives
    • Lee C.W., et al. Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives. J Power Sources 2006, 159(2):1474-1477.
    • (2006) J Power Sources , vol.159 , Issue.2 , pp. 1474-1477
    • Lee, C.W.1
  • 41
    • 0035400421 scopus 로고    scopus 로고
    • On some organic inhibitors of zinc corrosion in alkaline media
    • Dobryszycki J., Biallozor S. On some organic inhibitors of zinc corrosion in alkaline media. Corros Sci 2001, 43(7):1309-1319.
    • (2001) Corros Sci , vol.43 , Issue.7 , pp. 1309-1319
    • Dobryszycki, J.1    Biallozor, S.2
  • 42
    • 79954482443 scopus 로고    scopus 로고
    • Metal-air batteries with high energy density: Li-air versus Zn-air
    • Lee J.S., et al. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 2011, 1(1):34-50.
    • (2011) Adv Energy Mater , vol.1 , Issue.1 , pp. 34-50
    • Lee, J.S.1
  • 43
    • 0027539477 scopus 로고
    • Low zinc solubility electrolytes for use in zinc/nickel oxide cells
    • Adler T.C., McLarnon F.R., Cairns E.J. Low zinc solubility electrolytes for use in zinc/nickel oxide cells. J Electrochem Soc 1993, 140(2):289-294.
    • (1993) J Electrochem Soc , vol.140 , Issue.2 , pp. 289-294
    • Adler, T.C.1    McLarnon, F.R.2    Cairns, E.J.3
  • 44
    • 0006679107 scopus 로고
    • Zinc electrode cycle-life performance in alkaline electrolytes having reduced zinc species solubility
    • Nichols J.T., McLARNON F.R., Cairns E.J. Zinc electrode cycle-life performance in alkaline electrolytes having reduced zinc species solubility. Chem Eng Commun 1985, 37(1-6):355-379.
    • (1985) Chem Eng Commun , vol.37 , Issue.1-6 , pp. 355-379
    • Nichols, J.T.1    McLARNON, F.R.2    Cairns, E.J.3
  • 45
    • 84901032319 scopus 로고    scopus 로고
    • Metal/air batteries: the zinc/air case
    • Haas O., et al. Metal/air batteries: the zinc/air case. Handbook Fuel Cells 2010.
    • (2010) Handbook Fuel Cells
    • Haas, O.1
  • 46
    • 0019610920 scopus 로고
    • Impedance measurements during the cycling of a zinc electrode
    • Cachet C., Ströder U., Wiart R. Impedance measurements during the cycling of a zinc electrode. J Appl Electrochem 1981, 11(5):613-623.
    • (1981) J Appl Electrochem , vol.11 , Issue.5 , pp. 613-623
    • Cachet, C.1    Ströder, U.2    Wiart, R.3
  • 47
    • 33645691884 scopus 로고    scopus 로고
    • Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions
    • Wang R.Y., Kirk D.W., Zhang G.X. Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions. J Electrochem Soc 2006, 153(5):C357-C364.
    • (2006) J Electrochem Soc , vol.153 , Issue.5
    • Wang, R.Y.1    Kirk, D.W.2    Zhang, G.X.3
  • 48
    • 84860294342 scopus 로고    scopus 로고
    • An indicator of zinc morphology transition in flowing alkaline electrolyte
    • Ito Y., et al. An indicator of zinc morphology transition in flowing alkaline electrolyte. J Power Sources 2012, 211:119-128.
    • (2012) J Power Sources , vol.211 , pp. 119-128
    • Ito, Y.1
  • 49
    • 84893176824 scopus 로고    scopus 로고
    • Analyzing transport paths in the air electrode of a zinc air battery using X-ray tomography
    • Schröder D., et al. Analyzing transport paths in the air electrode of a zinc air battery using X-ray tomography. Electrochem Commun 2014.
    • (2014) Electrochem Commun
    • Schröder, D.1
  • 50
    • 27644534930 scopus 로고    scopus 로고
    • Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC
    • Lin G., Van Nguyen T. Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J Electrochem Soc 2005, 152(10):A1942-A1948.
    • (2005) J Electrochem Soc , vol.152 , Issue.10
    • Lin, G.1    Van Nguyen, T.2
  • 51
    • 84901032310 scopus 로고    scopus 로고
    • Electrochemical electrode for fuel cell.
    • Yao W, Tsai T. Electrochemical electrode for fuel cell. Google Patents; 2002.
    • (2002) Google Patents
    • Yao, W.1    Tsai, T.2
  • 52
    • 84901010139 scopus 로고    scopus 로고
    • Bifunctional air electrode.
    • Burchardt T, Becquet A. Bifunctional air electrode. EP Patent 1,977,475; 2012.
    • EP Patent , vol.475 , Issue.1-977 , pp. 2012
    • Burchardt, T.1    Becquet, A.2
  • 53
    • 0035253116 scopus 로고    scopus 로고
    • 2 filter materials
    • 2 filter materials. Phys Chem Chem Phys 2001, 3(3):368-371.
    • (2001) Phys Chem Chem Phys , vol.3 , Issue.3 , pp. 368-371
    • Drillet, J.1
  • 54
    • 70349208438 scopus 로고    scopus 로고
    • Zinc-air fuel cell, a potential candidate for alternative energy
    • Sapkota P., Kim H. Zinc-air fuel cell, a potential candidate for alternative energy. J Ind Eng Chem 2009, 15(4):445-450.
    • (2009) J Ind Eng Chem , vol.15 , Issue.4 , pp. 445-450
    • Sapkota, P.1    Kim, H.2
  • 55
    • 77549083400 scopus 로고    scopus 로고
    • An experimental study on the performance of a zinc air fuel cell with inexpensive metal oxide catalysts and porous organic polymer separators
    • Sapkota P., Kim H. An experimental study on the performance of a zinc air fuel cell with inexpensive metal oxide catalysts and porous organic polymer separators. J Ind Eng Chem 2010, 16(1):39-44.
    • (2010) J Ind Eng Chem , vol.16 , Issue.1 , pp. 39-44
    • Sapkota, P.1    Kim, H.2
  • 56
    • 84901032311 scopus 로고    scopus 로고
    • A zinc/air fuel cell for electric vehicles. In: Battery conference on applications and advances, 1999. The Fourteenth Annual. IEEE
    • Cherepy NJ, Kruegar R, Cooper JF. A zinc/air fuel cell for electric vehicles. In: Battery conference on applications and advances, 1999. The Fourteenth Annual. IEEE; 1999.
    • (1999)
    • Cherepy, N.J.1    Kruegar, R.2    Cooper, J.F.3
  • 57
    • 67649413124 scopus 로고    scopus 로고
    • Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte
    • Han J., Li N., Zhang T. Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J Power Sources 2009, 193(2):885-889.
    • (2009) J Power Sources , vol.193 , Issue.2 , pp. 885-889
    • Han, J.1    Li, N.2    Zhang, T.3
  • 58
    • 84859618889 scopus 로고    scopus 로고
    • Zinc oxidation in dilute alkaline solutions studied by real-time electrochemical impedance spectroscopy
    • Ko Y., Park S. Zinc oxidation in dilute alkaline solutions studied by real-time electrochemical impedance spectroscopy. J Phys Chem C 2012, 116(13):7260-7268.
    • (2012) J Phys Chem C , vol.116 , Issue.13 , pp. 7260-7268
    • Ko, Y.1    Park, S.2
  • 59
    • 33748089361 scopus 로고    scopus 로고
    • 2 zinc-air battery
    • 2 zinc-air battery. J Power Sources 2006, 159(1):752-757.
    • (2006) J Power Sources , vol.159 , Issue.1 , pp. 752-757
    • Mohamad, A.A.1
  • 60
    • 0035977366 scopus 로고    scopus 로고
    • Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells
    • Othman R., et al. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells. J Power Sources 2001, 103(1):34-41.
    • (2001) J Power Sources , vol.103 , Issue.1 , pp. 34-41
    • Othman, R.1
  • 61
    • 0037079140 scopus 로고    scopus 로고
    • Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery
    • Yang C., Lin S. Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery. J Power Sources 2002, 112(2):497-503.
    • (2002) J Power Sources , vol.112 , Issue.2 , pp. 497-503
    • Yang, C.1    Lin, S.2
  • 62
    • 63449086211 scopus 로고    scopus 로고
    • Imidazolium ionic liquids as electrolytes for manganese dioxide free Leclanché batteries
    • Stracke M.P., et al. Imidazolium ionic liquids as electrolytes for manganese dioxide free Leclanché batteries. Appl Energy 2009, 86(9):1512-1516.
    • (2009) Appl Energy , vol.86 , Issue.9 , pp. 1512-1516
    • Stracke, M.P.1
  • 63
    • 84901047621 scopus 로고    scopus 로고
    • Ionic liquid containing sulfonate ions.
    • Wolfe D, Friesen CA, Johnson PB. Ionic liquid containing sulfonate ions. US Patent 20,120,321,967; 2012.
    • (2012) US Patent , vol.321 , Issue.20-120 , pp. 967
    • Wolfe, D.1    Friesen, C.A.2    Johnson, P.B.3
  • 64
    • 84857295713 scopus 로고    scopus 로고
    • Zinc-air batteries: prospects and challenges for future improvement
    • Harting K., Kunz U., Turek T. Zinc-air batteries: prospects and challenges for future improvement. Z Phys Chem 2012, 226(2):151-166.
    • (2012) Z Phys Chem , vol.226 , Issue.2 , pp. 151-166
    • Harting, K.1    Kunz, U.2    Turek, T.3
  • 65
    • 84876917225 scopus 로고    scopus 로고
    • Chelating ionic liquids for reversible zinc electrochemistry
    • Kar M., et al. Chelating ionic liquids for reversible zinc electrochemistry. Phys Chem Chem Phys 2013, 15(19):7191-7197.
    • (2013) Phys Chem Chem Phys , vol.15 , Issue.19 , pp. 7191-7197
    • Kar, M.1
  • 66
    • 84860525766 scopus 로고    scopus 로고
    • 2+ salt and water concentration
    • 2+ salt and water concentration. Electrochem Commun 2012, 18:119-122.
    • (2012) Electrochem Commun , vol.18 , pp. 119-122
    • Simons, T.J.1
  • 67
    • 84888591110 scopus 로고    scopus 로고
    • Energy applications of ionic liquids
    • MacFarlane D.R., et al. Energy applications of ionic liquids. Energy Environ Sci 2014, 7(1):232-250.
    • (2014) Energy Environ Sci , vol.7 , Issue.1 , pp. 232-250
    • MacFarlane, D.R.1
  • 68
    • 7644236656 scopus 로고    scopus 로고
    • Battery separators
    • Arora P., Zhang Z. Battery separators. Chem Rev 2004, 104(10):4419-4462.
    • (2004) Chem Rev , vol.104 , Issue.10 , pp. 4419-4462
    • Arora, P.1    Zhang, Z.2
  • 69
    • 79958032370 scopus 로고    scopus 로고
    • Anion exchange membranes for alkaline fuel cells: a review
    • Merle G., Wessling M., Nijmeijer K. Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 2011, 377(1):1-35.
    • (2011) J Membr Sci , vol.377 , Issue.1 , pp. 1-35
    • Merle, G.1    Wessling, M.2    Nijmeijer, K.3
  • 70
    • 0037468627 scopus 로고    scopus 로고
    • Cationic polysulfonium membrane as separator in zinc-air cell
    • Dewi E.L., et al. Cationic polysulfonium membrane as separator in zinc-air cell. J Power Sources 2003, 115(1):149-152.
    • (2003) J Power Sources , vol.115 , Issue.1 , pp. 149-152
    • Dewi, E.L.1
  • 71
    • 84901041526 scopus 로고    scopus 로고
    • A high rate zinc/MCM-41/air cell. Artikel Ilmiah Bidang Teknologi Industri Rancang Bangun Dan Rekayasa
    • Saputra H, Othman R. A high rate zinc/MCM-41/air cell. Artikel Ilmiah Bidang Teknologi Industri Rancang Bangun Dan Rekayasa 2013;1(1).
    • (2013) , Issue.1 , pp. 1
    • Saputra, H.1    Othman, R.2
  • 72
    • 33748761908 scopus 로고    scopus 로고
    • Preparation and characterization of high ionic conducting alkaline non-woven membranes by sulfonation
    • Wu G.M., Lin S.J., Yang C.C. Preparation and characterization of high ionic conducting alkaline non-woven membranes by sulfonation. J Membr Sci 2006, 284(1):120-127.
    • (2006) J Membr Sci , vol.284 , Issue.1 , pp. 120-127
    • Wu, G.M.1    Lin, S.J.2    Yang, C.C.3
  • 73
    • 55749086381 scopus 로고    scopus 로고
    • Study of high-anionic conducting sulfonated microporous membranes for zinc-air electrochemical cells
    • Wu G.M., et al. Study of high-anionic conducting sulfonated microporous membranes for zinc-air electrochemical cells. Mater Chem Phys 2008, 112(3):798-804.
    • (2008) Mater Chem Phys , vol.112 , Issue.3 , pp. 798-804
    • Wu, G.M.1
  • 74
    • 33645724673 scopus 로고    scopus 로고
    • Bifunctional oxygen/air electrodes
    • Jörissen L. Bifunctional oxygen/air electrodes. J Power Sources 2006, 155(1):23-32.
    • (2006) J Power Sources , vol.155 , Issue.1 , pp. 23-32
    • Jörissen, L.1
  • 75
    • 77951451731 scopus 로고    scopus 로고
    • Air cathodes for metal-air batteries and fuel cells.
    • IEEE. IEEE; 2009.
    • Martin JJ, et al. Air cathodes for metal-air batteries and fuel cells. In: Electrical power & energy conference (EPEC), 2009 IEEE. IEEE; 2009.
    • (2009) Electrical power & energy conference (EPEC)
    • Martin, J.J.1
  • 76
    • 84859156413 scopus 로고    scopus 로고
    • 4 and bi-functional properties as air/oxygen electrode materials
    • 4 and bi-functional properties as air/oxygen electrode materials. Electrochim Acta 2012, 68:198-201.
    • (2012) Electrochim Acta , vol.68 , pp. 198-201
    • Kong, F.1
  • 77
    • 0032620410 scopus 로고    scopus 로고
    • 4 [M=Co, Fe, (CoFe)] as electrocatalyst for oxygen evolution/reduction in alkaline solution
    • 4 [M=Co, Fe, (CoFe)] as electrocatalyst for oxygen evolution/reduction in alkaline solution. J Appl Electrochem 1999, 29(11):1351-1354.
    • (1999) J Appl Electrochem , vol.29 , Issue.11 , pp. 1351-1354
    • Li, N.1
  • 78
    • 0028481319 scopus 로고
    • 3: a stable and powerful catalyst for bifunctional air electrodes
    • 3: a stable and powerful catalyst for bifunctional air electrodes. Electrochim Acta 1994, 39(11):1661-1668.
    • (1994) Electrochim Acta , vol.39 , Issue.11 , pp. 1661-1668
    • Müller, S.1    Striebel, K.2    Haas, O.3
  • 79
    • 0037447737 scopus 로고    scopus 로고
    • 3-x in bifunctional air electrode
    • 3-x in bifunctional air electrode. Electrochim Acta 2003, 48(11):1567-1571.
    • (2003) Electrochim Acta , vol.48 , Issue.11 , pp. 1567-1571
    • Wu, N.1    Liu, W.2    Su, S.3
  • 80
    • 79959577135 scopus 로고    scopus 로고
    • Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries
    • Suntivich J., et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem 2011, 3(7):546-550.
    • (2011) Nat Chem , vol.3 , Issue.7 , pp. 546-550
    • Suntivich, J.1
  • 81
    • 0042831072 scopus 로고    scopus 로고
    • Studies on the oxygen reduction catalyst for zinc-air battery electrode
    • Wang X., et al. Studies on the oxygen reduction catalyst for zinc-air battery electrode. J Power Sources 2003, 124(1):278-284.
    • (2003) J Power Sources , vol.124 , Issue.1 , pp. 278-284
    • Wang, X.1
  • 82
    • 84868701123 scopus 로고    scopus 로고
    • Electrocatalytic activity of non-stoichiometric perovskites toward oxygen reduction reaction in alkaline electrolytes
    • Yuan X., et al. Electrocatalytic activity of non-stoichiometric perovskites toward oxygen reduction reaction in alkaline electrolytes. ECS Trans 2011, 35(33):11-20.
    • (2011) ECS Trans , vol.35 , Issue.33 , pp. 11-20
    • Yuan, X.1
  • 83
    • 0024606150 scopus 로고
    • Oxide-based bifunctional oxygen electrode for rechargeable metal/air batteries
    • Kannan A.M., Shukla A.K., Sathyanarayana S. Oxide-based bifunctional oxygen electrode for rechargeable metal/air batteries. J Power Sources 1989, 25(2):141-150.
    • (1989) J Power Sources , vol.25 , Issue.2 , pp. 141-150
    • Kannan, A.M.1    Shukla, A.K.2    Sathyanarayana, S.3
  • 84
    • 0018996382 scopus 로고
    • Bifunctional air electrode for metal-air batteries
    • Carlsson L., Öjefors L. Bifunctional air electrode for metal-air batteries. J Electrochem Soc 1980, 127(3):525-528.
    • (1980) J Electrochem Soc , vol.127 , Issue.3 , pp. 525-528
    • Carlsson, L.1    Öjefors, L.2
  • 85
    • 84879944345 scopus 로고    scopus 로고
    • Multifunctional inorganic electrode materials for high-performance rechargeable metal-air batteries
    • Kubo D., et al. Multifunctional inorganic electrode materials for high-performance rechargeable metal-air batteries. J Mater Chem A 2013, 1(23):6804-6809.
    • (2013) J Mater Chem A , vol.1 , Issue.23 , pp. 6804-6809
    • Kubo, D.1
  • 86
    • 84863350595 scopus 로고    scopus 로고
    • Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery
    • Tang F., Li L., Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012, 24(12):1504-1534.
    • (2012) Adv Mater , vol.24 , Issue.12 , pp. 1504-1534
    • Tang, F.1    Li, L.2    Chen, D.3
  • 87
    • 84862158178 scopus 로고    scopus 로고
    • High active hollow nitrogen-doped carbon microspheres for oxygen reduction in alkaline media
    • Yu Y.M., et al. High active hollow nitrogen-doped carbon microspheres for oxygen reduction in alkaline media. Fuel Cells 2012, 12(3):506-510.
    • (2012) Fuel Cells , vol.12 , Issue.3 , pp. 506-510
    • Yu, Y.M.1
  • 88
    • 84877351829 scopus 로고    scopus 로고
    • Nitrogen-doped (6, 0) carbon nanotubes: a comparative DFT study based on surface reactivity descriptors
    • Esrafili M.D. Nitrogen-doped (6, 0) carbon nanotubes: a comparative DFT study based on surface reactivity descriptors. Comput Theor Chem 2013.
    • (2013) Comput Theor Chem
    • Esrafili, M.D.1
  • 89
    • 84864670384 scopus 로고    scopus 로고
    • Potential dependent and structural selectivity of the oxygen reduction reaction on nitrogen-doped carbon nanotubes: a density functional theory study
    • Zhang P., Lian J.S., Jiang Q. Potential dependent and structural selectivity of the oxygen reduction reaction on nitrogen-doped carbon nanotubes: a density functional theory study. Phys Chem Chem Phys 2012, 14(33):11715-11723.
    • (2012) Phys Chem Chem Phys , vol.14 , Issue.33 , pp. 11715-11723
    • Zhang, P.1    Lian, J.S.2    Jiang, Q.3
  • 90
    • 84863116264 scopus 로고    scopus 로고
    • Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free electrocatalyst for the oxygen reduction reaction
    • Ma Y., et al. Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free electrocatalyst for the oxygen reduction reaction. J Phys Chem C 2011, 115(50):24592-24597.
    • (2011) J Phys Chem C , vol.115 , Issue.50 , pp. 24592-24597
    • Ma, Y.1
  • 91
    • 84926639921 scopus 로고    scopus 로고
    • Synthesis and electrochemical applications of nitrogen-doped carbon nanomaterials
    • Majeed S., et al. Synthesis and electrochemical applications of nitrogen-doped carbon nanomaterials. Nanotechnol Rev 2013, 1-22.
    • (2013) Nanotechnol Rev , pp. 1-22
    • Majeed, S.1
  • 92
    • 77956868477 scopus 로고    scopus 로고
    • Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells
    • Chen Z., Higgins D., Chen Z. Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. Carbon 2010, 48(11):3057-3065.
    • (2010) Carbon , vol.48 , Issue.11 , pp. 3057-3065
    • Chen, Z.1    Higgins, D.2    Chen, Z.3
  • 93
    • 84862816953 scopus 로고    scopus 로고
    • Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery
    • Chen Z., et al. Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim Acta 2012, 69:295-300.
    • (2012) Electrochim Acta , vol.69 , pp. 295-300
    • Chen, Z.1
  • 94
    • 84859728549 scopus 로고    scopus 로고
    • Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application
    • Chen Z., et al. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett 2012, 12(4):1946-1952.
    • (2012) Nano Lett , vol.12 , Issue.4 , pp. 1946-1952
    • Chen, Z.1
  • 95
    • 84876588139 scopus 로고    scopus 로고
    • Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes
    • Hardin W.G., et al. Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes. J Phys Chem Lett 2013, 4(8):1254-1259.
    • (2013) J Phys Chem Lett , vol.4 , Issue.8 , pp. 1254-1259
    • Hardin, W.G.1
  • 96
    • 84878901341 scopus 로고    scopus 로고
    • An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation
    • Gong M., et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 2013.
    • (2013) J Am Chem Soc
    • Gong, M.1
  • 97
    • 70350572880 scopus 로고    scopus 로고
    • 2 battery
    • 2 battery. Electrochem Commun 2009, 11(11):2191-2194.
    • (2009) Electrochem Commun , vol.11 , Issue.11 , pp. 2191-2194
    • Pan, J.1
  • 98
    • 0034539387 scopus 로고    scopus 로고
    • 2 in zinc-air batteries
    • 2 in zinc-air batteries. J Power Sources 2000, 91(2):83-85.
    • (2000) J Power Sources , vol.91 , Issue.2 , pp. 83-85
    • Wei, Z.1
  • 99
    • 76249105600 scopus 로고    scopus 로고
    • 2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media
    • 2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 2009, 22(3):898-905.
    • (2009) Chem Mater , vol.22 , Issue.3 , pp. 898-905
    • Cheng, F.1
  • 100
    • 0346639336 scopus 로고    scopus 로고
    • 2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells
    • 2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells. Electrochim Acta 2004, 49(6):873-877.
    • (2004) Electrochim Acta , vol.49 , Issue.6 , pp. 873-877
    • Zhang, G.Q.1    Zhang, X.G.2
  • 101
    • 5744254939 scopus 로고    scopus 로고
    • 2 for metal air electrochemical cells
    • 2 for metal air electrochemical cells. Carbon 2004, 42(15):3097-3102.
    • (2004) Carbon , vol.42 , Issue.15 , pp. 3097-3102
    • Zhang, G.1    Zhang, X.2    Wang, Y.3
  • 102
    • 1142285294 scopus 로고    scopus 로고
    • 2 reduction: novel insight into the mechanism of alkaline air electrode
    • 2 reduction: novel insight into the mechanism of alkaline air electrode. Electrochem Commun 2004, 6(3):273-277.
    • (2004) Electrochem Commun , vol.6 , Issue.3 , pp. 273-277
    • Ohsaka, T.1
  • 103
    • 0036530394 scopus 로고    scopus 로고
    • Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution
    • Mao L., et al. Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution. J Electrochem Soc 2002, 149(4):A504-A507.
    • (2002) J Electrochem Soc , vol.149 , Issue.4
    • Mao, L.1
  • 104
    • 84901032313 scopus 로고    scopus 로고
    • Catalyst for fuel cell oxygen electrodes.
    • Fetcenko M, et al. Catalyst for fuel cell oxygen electrodes. Google Patents; 2003.
    • (2003) Google Patents
    • Fetcenko, M.1
  • 105
    • 84890852539 scopus 로고    scopus 로고
    • Iron-and nitrogen-functionalized graphene nanosheet and nanoshell composites as a highly active electrocatalyst for oxygen reduction reaction
    • Kim B.J., et al. Iron-and nitrogen-functionalized graphene nanosheet and nanoshell composites as a highly active electrocatalyst for oxygen reduction reaction. J Phys Chem C 2013, 117(50):26501-26508.
    • (2013) J Phys Chem C , vol.117 , Issue.50 , pp. 26501-26508
    • Kim, B.J.1
  • 106
    • 84901032314 scopus 로고
    • Electrochemical cell utilizing three electrodes.
    • Stacburski Z. Electrochemical cell utilizing three electrodes. Google Patents; 1970.
    • (1970) Google Patents
    • Stacburski, Z.1
  • 107
    • 84901021645 scopus 로고    scopus 로고
    • Electrically rechargeable, metal-air battery systems and methods.
    • Amendola S, et al. Electrically rechargeable, metal-air battery systems and methods. US Patent 20,130,115,531; 2013.
    • (2013) US Patent , vol.115 , Issue.20-130 , pp. 531
    • Amendola, S.1
  • 108
    • 0037174583 scopus 로고    scopus 로고
    • Modeling of an electrically rechargeable alkaline Zn-air battery
    • Deiss E., Holzer F., Haas O. Modeling of an electrically rechargeable alkaline Zn-air battery. Electrochim Acta 2002, 47(25):3995-4010.
    • (2002) Electrochim Acta , vol.47 , Issue.25 , pp. 3995-4010
    • Deiss, E.1    Holzer, F.2    Haas, O.3
  • 109
    • 84884374892 scopus 로고    scopus 로고
    • Numerical simulation of discharge process and failure mechanisms of zinc electrode
    • Song H., Xu X., Li F. Numerical simulation of discharge process and failure mechanisms of zinc electrode. Acta Phys-Chim Sin 2013, 29(9):1961-1974.
    • (2013) Acta Phys-Chim Sin , vol.29 , Issue.9 , pp. 1961-1974
    • Song, H.1    Xu, X.2    Li, F.3
  • 110
    • 0001281598 scopus 로고
    • Fractal structures of zinc metal leaves grown by electrodeposition
    • Matsushita M., et al. Fractal structures of zinc metal leaves grown by electrodeposition. Phys Rev Lett 1984, 53(3):286.
    • (1984) Phys Rev Lett , vol.53 , Issue.3 , pp. 286
    • Matsushita, M.1
  • 111
    • 33750943161 scopus 로고    scopus 로고
    • 2 concentration in a zinc/air battery by absorption in a rotating packed bed
    • 2 concentration in a zinc/air battery by absorption in a rotating packed bed. J Power Sources 2006, 162(2):1431-1436.
    • (2006) J Power Sources , vol.162 , Issue.2 , pp. 1431-1436
    • Cheng, H.1    Tan, C.2
  • 112
    • 84901032305 scopus 로고    scopus 로고
    • Scrubber system for removing carbon dioxide from a metal-air or fuel cell battery.
    • Goldstein JR, et al. Scrubber system for removing carbon dioxide from a metal-air or fuel cell battery. Google Patents; 1997.
    • (1997) Google Patents
    • Goldstein, J.R.1
  • 113
    • 84901032306 scopus 로고    scopus 로고
    • Air manager system for metal-air battery. Google Patents; 1995., Goldstein JR, et al. Scrubber system for removing carbon dioxide from a metal-air or fuel cell battery. Google Patents
    • Cheiky MC. Air manager system for metal-air battery. Google Patents; 1995.
    • (1997)
    • Cheiky, M.C.1
  • 114
    • 84901032307 scopus 로고    scopus 로고
    • Zn/air cell performance in extreme humidity by controlling hydrophobic layer porosity.
    • Guo J. Zn/air cell performance in extreme humidity by controlling hydrophobic layer porosity. Google Patents; 2003.
    • (2003) Google Patents
    • Guo, J.1
  • 115
    • 84901032308 scopus 로고    scopus 로고
    • Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries
    • Lee D.U., et al. Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries. Adv Energy Mater 2013.
    • (2013) Adv Energy Mater
    • Lee, D.U.1
  • 116
    • 84887334425 scopus 로고    scopus 로고
    • 2 nanorods catalyst for use as an air electrode in zinc-air battery
    • 2 nanorods catalyst for use as an air electrode in zinc-air battery. Electrochim Acta 2013, 114:598-604.
    • (2013) Electrochim Acta , vol.114 , pp. 598-604
    • Goh, F.W.1
  • 117
    • 84894255606 scopus 로고    scopus 로고
    • 4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc-air battery
    • 4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc-air battery. Electrochem Commun 2014, 41:59-63.
    • (2014) Electrochem Commun , vol.41 , pp. 59-63
    • Prabu, M.1    Ramakrishnan, P.2    Shanmugam, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.