메뉴 건너뛰기




Volumn 16, Issue 3, 2014, Pages 671-689

Multi-step streamflow forecasting using data-driven non-linear methods in contrasting climate regimes

Author keywords

Artificial neural networks; Climate regime; Forecasting; Streamflow; Support vector regression; Times series analysis

Indexed keywords


EID: 84901021366     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2013.042     Document Type: Article
Times cited : (54)

References (69)
  • 1
    • 3242685028 scopus 로고    scopus 로고
    • Neural Network vs. ARMA modeling: Constructing benchmark case studies of river flow prediction
    • University of Bristol, England
    • Abrahart, R. J. & See, L. 1998 Neural Network vs. ARMA modeling: constructing benchmark case studies of river flow prediction. In: Proceedings of the 3rd International Conference on Geocomputation, University of Bristol, England.
    • (1998) Proceedings of the 3rd International Conference on Geocomputation
    • Abrahart, R.J.1    See, L.2
  • 2
    • 79954992730 scopus 로고    scopus 로고
    • Forecasting monthly streamflow of spring-summer runoff season in Rio Grande headwaters basin using stochastic hybrid modeling approach
    • Abudu, S., King, J. P. & Bawazir, A. S. 2011 Forecasting monthly streamflow of spring-summer runoff season in Rio Grande headwaters basin using stochastic hybrid modeling approach. Journal of Hydrologic Engineering 16, 384-390.
    • (2011) Journal of Hydrologic Engineering , vol.16 , pp. 384-390
    • Abudu, S.1    King, J.P.2    Bawazir, A.S.3
  • 4
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski, J. 2008a Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. Journal of Hydrology 353, 247-266.
    • (2008) Journal of Hydrology , vol.353 , pp. 247-266
    • Adamowski, J.1
  • 5
    • 67650321039 scopus 로고    scopus 로고
    • River flow forecasting using wavelet and cross-wavelet transform models
    • Adamowski, J. 2008b River flow forecasting using wavelet and cross-wavelet transform models. Journal of Hydrological Processes 22, 4877-4891.
    • (2008) Journal of Hydrological Processes , vol.22 , pp. 4877-4891
    • Adamowski, J.1
  • 6
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski, J. & Chan, H. F. 2011 A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology 407, 28-40.
    • (2011) Journal of Hydrology , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 7
    • 69249101676 scopus 로고    scopus 로고
    • Development of a new method of wavelet aided trend detection and estimation
    • Adamowski, K., Prokoph, A. & Adamowski, J. 2009 Development of a new method of wavelet aided trend detection and estimation. Journal of Hydrological Processes 23, 2686-2696.
    • (2009) Journal of Hydrological Processes , vol.23 , pp. 2686-2696
    • Adamowski, K.1    Prokoph, A.2    Adamowski, J.3
  • 8
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski, J. & Sun, K. 2010 Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology 390, 85-91.
    • (2010) Journal of Hydrology , vol.390 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 9
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil, F. & Tape, D. 2004 An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. Journal of Environmental Engineering and Science 3, 121-128.
    • (2004) Journal of Environmental Engineering and Science , vol.3 , pp. 121-128
    • Anctil, F.1    Tape, D.2
  • 10
    • 31044438334 scopus 로고    scopus 로고
    • Multitime scale stream flow 505 predictions: The support vector machines approach
    • Asefa, T., Kemblowski, M., McKee, M. & Khalil, A. 2006 Multitime scale stream flow 505 predictions: The support vector machines approach. Journal of Hydrology 318, 7-16.
    • (2006) Journal of Hydrology , vol.318 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 11
    • 77952241177 scopus 로고    scopus 로고
    • Advances in ungauged streamflow prediction using artificial neural networks
    • Besaw, L. E., Rizzo, D. M., Bierman, P. R. & Hackett, W. R. 2010 Advances in ungauged streamflow prediction using artificial neural networks. Journal of Hydrology 386, 27-37.
    • (2010) Journal of Hydrology , vol.386 , pp. 27-37
    • Besaw, L.E.1    Rizzo, D.M.2    Bierman, P.R.3    Hackett, W.R.4
  • 12
    • 33644526990 scopus 로고    scopus 로고
    • A manifesto for the equifinality thesis
    • Beven, K. 2006 A manifesto for the equifinality thesis. Journal of Hydrology 320, 18-36.
    • (2006) Journal of Hydrology , vol.320 , pp. 18-36
    • Beven, K.1
  • 14
    • 84878195645 scopus 로고    scopus 로고
    • Bow River Project Research Consortium, Alberta Water Research Institute, Edmonton
    • Bow River Project Research Consortium 2010 Bow River Project: Final Report. Alberta Water Research Institute, Edmonton.
    • (2010) Bow River Project: Final Report
  • 16
    • 0035533512 scopus 로고    scopus 로고
    • Financial forecasting using support vector machines
    • Cao, L. & Tay, F. E. H. 2001 Financial forecasting using support vector machines. Neural Computing and Applications 10, 184-192.
    • (2001) Neural Computing and Applications , vol.10 , pp. 184-192
    • Cao, L.1    Tay, F.E.H.2
  • 17
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • 27
    • Chang, C.-C. & Lin, C.-J. 2011 LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1-27:27. Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2011) ACM Transactions on Intelligent Systems and Technology , vol.2 , Issue.27 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 18
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen, Y. H. & Chang, F. J. 2009 Evolutionary artificial neural networks for hydrological systems forecasting. Journal of Hydrology 367, 125-137.
    • (2009) Journal of Hydrology , vol.367 , pp. 125-137
    • Chen, Y.H.1    Chang, F.J.2
  • 19
    • 23044443211 scopus 로고    scopus 로고
    • Application of generalized regression neural networks to intermittent flow forecasting and estimation
    • Cigizoglu, H. K. 2005 Application of generalized regression neural networks to intermittent flow forecasting and estimation. Journal of Hydrologic Engineering 4, 336-342.
    • (2005) Journal of Hydrologic Engineering , vol.4 , pp. 336-342
    • Cigizoglu, H.K.1
  • 20
    • 2042453329 scopus 로고    scopus 로고
    • Wavelet analysis of variability in annual Canadian streamflows
    • American Geophysical Union
    • Coulibaly, P. & Burn, D. H. 2004 Wavelet analysis of variability in annual Canadian streamflows. Water Resources Research 40, W031051-W031051. American Geophysical Union.
    • (2004) Water Resources Research , vol.40
    • Coulibaly, P.1    Burn, D.H.2
  • 21
    • 0000436568 scopus 로고
    • Neural networks - Applications in hydrology and water resources engineering
    • 2-4 October 1991, Perth
    • Daniel, T M. 1991 Neural networks - Applications in hydrology and water resources engineering. International Hydrology and Water Resources Symposium, 2-4 October 1991, Perth, pp. 791-802.
    • (1991) International Hydrology and Water Resources Symposium , pp. 791-802
    • Daniel, T.M.1
  • 22
    • 79956340139 scopus 로고    scopus 로고
    • Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach
    • Dhanya, C. T. & Kumar, D. N. 2011 Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach. Water Resources Research 47, W06507.
    • (2011) Water Resources Research , vol.47
    • Dhanya, C.T.1    Kumar, D.N.2
  • 23
    • 79957986045 scopus 로고    scopus 로고
    • Monthly streamflow forecasting based on improved support vector machine model
    • Guo, J., Zhou, J., Qin, H., Zou, Q. & Li, Q. 2011 Monthly streamflow forecasting based on improved support vector machine model. Expert Systems with Applications 38, 13073-13081.
    • (2011) Expert Systems with Applications , vol.38 , pp. 13073-13081
    • Guo, J.1    Zhou, J.2    Qin, H.3    Zou, Q.4    Li, Q.5
  • 24
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt Algorithm
    • Hagan, M. T & Menhaj, M. B. 1994 Training feedforward networks with the Marquardt Algorithm. IEEE Transactions on Neural Networks 5, 989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 25
    • 33846419128 scopus 로고    scopus 로고
    • Uncertainties in real-time flood forecasting with neural networks
    • Han, D., Kwong, T & Li, S. 2007 Uncertainties in real-time flood forecasting with neural networks. Hydrological Processes 21, 223-228.
    • (2007) Hydrological Processes , vol.21 , pp. 223-228
    • Han, D.1    Kwong, T.2    Li, S.3
  • 26
    • 77950987931 scopus 로고    scopus 로고
    • Changes in streamflow dynamics in the Rhine Basin under three highresolution regional climate scenarios
    • Hurkmans, R., Terink, W., Uijlenhoet, R & Torfs, P. 2010 Changes in streamflow dynamics in the Rhine Basin under three highresolution regional climate scenarios. Journal of Climate 23, 679-699.
    • (2010) Journal of Climate , vol.23 , pp. 679-699
    • Hurkmans, R.1    Terink, W.2    Uijlenhoet, R.3    Torfs, P.4
  • 28
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • Jeong, D. & Kim, Y. 2005 Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrological Processes 19, 3819-3835.
    • (2005) Hydrological Processes , vol.19 , pp. 3819-3835
    • Jeong, D.1    Kim, Y.2
  • 30
    • 33749161832 scopus 로고    scopus 로고
    • Frequency analysis of a sequence of dependant and/or non-stationary hydro-meteorological observations: A review
    • Khaliq, M. N., Ouarda, T B. M. J., Ondo, J.-C., Gachon, P. & Bobee, B. 2006 Frequency analysis of a sequence of dependant and/or non-stationary hydro-meteorological observations: A review. Journal of Hydrology 329, 534-552.
    • (2006) Journal of Hydrology , vol.329 , pp. 534-552
    • Khaliq, M.N.1    Ouarda, T.B.M.J.2    Ondo, J.-C.3    Gachon, P.4    Bobee, B.5
  • 31
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan, M. S. & Coulibaly, P. 2006 Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering 11, 199-205.
    • (2006) Journal of Hydrologic Engineering , vol.11 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 32
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim, T W. & Valdes, J. B. 2003 Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering, ASCE 6, 319-328.
    • (2003) Journal of Hydrologic Engineering, ASCE , vol.6 , pp. 319-328
    • Kim, T.W.1    Valdes, J.B.2
  • 33
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kisi, Ö. 2008 Stream flow forecasting using neuro-wavelet technique. Hydrological Processes 22, 4142-4152.
    • (2008) Hydrological Processes , vol.22 , pp. 4142-4152
    • Kisi, Ö.1
  • 34
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kisi, Ö. 2009 Neural networks and wavelet conjunction model for intermittent streamflow forecasting. Journal of Hydrologic Engineering 14, 773-783.
    • (2009) Journal of Hydrologic Engineering , vol.14 , pp. 773-783
    • Kisi, Ö.1
  • 36
    • 70349559015 scopus 로고    scopus 로고
    • Evapotranspiration modelling using support vector machines
    • Kisi, Ö. & Çimen, M. 2009 Evapotranspiration modelling using support vector machines. Hydrological Science Journal 54, 918-928.
    • (2009) Hydrological Science Journal , vol.54 , pp. 918-928
    • Kisi, Ö.1    Çimen, M.2
  • 37
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi, Ö. & Çimen, M. 2011 A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology 399, 132-140.
    • (2011) Journal of Hydrology , vol.399 , pp. 132-140
    • Kisi, Ö.1    Çimen, M.2
  • 39
    • 36048951385 scopus 로고    scopus 로고
    • Wavelet analysis of the annual discharge records of the world's largest rivers
    • Labat, D. 2008 Wavelet analysis of the annual discharge records of the world's largest rivers. Advances in Water Resources 31, 109-117.
    • (2008) Advances in Water Resources , vol.31 , pp. 109-117
    • Labat, D.1
  • 40
    • 85034860364 scopus 로고    scopus 로고
    • Improved non-linear transfer function and neural network methods of flow routing for real-time forecasting
    • Lekkas, D. F., Imrie, C E. & Lees, M. J. 2001 Improved non-linear transfer function and neural network methods of flow routing for real-time forecasting. Journal of Hydroinformatics 3, 153-164.
    • (2001) Journal of Hydroinformatics , vol.3 , pp. 153-164
    • Lekkas, D.F.1    Imrie, C.E.2    Lees, M.J.3
  • 42
    • 84862648048 scopus 로고    scopus 로고
    • Wavelet-Volterra coupled model for monthly stream flow forecasting
    • Maheswaren, R. & Khosa, R. 2012 Wavelet-Volterra coupled model for monthly stream flow forecasting. Journal of Hydrology 450-451, 320-335.
    • (2012) Journal of Hydrology , vol.450-451 , pp. 320-335
    • Maheswaren, R.1    Khosa, R.2
  • 43
    • 77951662436 scopus 로고    scopus 로고
    • Potential of support vector regression for prediction of monthly streamflow using endogenous property
    • Maity, R., Bhagwat, P. P. & Bhatnagar, A. 2010 Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrological Processes 24, 917-923.
    • (2010) Hydrological Processes , vol.24 , pp. 917-923
    • Maity, R.1    Bhagwat, P.P.2    Bhatnagar, A.3
  • 44
    • 0034438072 scopus 로고    scopus 로고
    • Long-lead precipitation outlook augmentation of multi-variate linear regression streamflow forecasts
    • Port Angeles, Washington, US Army Corps of Engineers
    • Modini, G. C. 2000 Long-lead precipitation outlook augmentation of multi-variate linear regression streamflow forecasts. In: Proceedings of the 68th annual Western Snow Conference, Port Angeles, Washington, pp. 57-68, US Army Corps of Engineers.
    • (2000) Proceedings of the 68th Annual Western Snow Conference , pp. 57-68
    • Modini, G.C.1
  • 45
    • 0037170654 scopus 로고    scopus 로고
    • Support vector machines for short-term electrical load forecasting
    • Mohandes, M. 2002 Support vector machines for short-term electrical load forecasting. International Journal of Energy Research 26, 335-345.
    • (2002) International Journal of Energy Research , vol.26 , pp. 335-345
    • Mohandes, M.1
  • 48
    • 65249094814 scopus 로고    scopus 로고
    • River flow forecasting using different artificial neural network algorithms and wavelet transform
    • Partal, T. 2009 River flow forecasting using different artificial neural network algorithms and wavelet transform. Canadian Journal of Civil Engineering 36, 26-38.
    • (2009) Canadian Journal of Civil Engineering , vol.36 , pp. 26-38
    • Partal, T.1
  • 49
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal, T. & Kisi, Ö. 2007 Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology 342, 199-212.
    • (2007) Journal of Hydrology , vol.342 , pp. 199-212
    • Partal, T.1    Kisi, Ö.2
  • 51
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • Rajasekaran, S., Gayathri, S. & Lee, T. L. 2008 Support vector regression methodology for storm surge predictions. Ocean Engineering 36, 1578-1587.
    • (2008) Ocean Engineering , vol.36 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.L.3
  • 53
    • 0141425890 scopus 로고    scopus 로고
    • Forecasting monthly 601 streamflow dynamics in the western United States: A nonlinear dynamical approach
    • Sivakumar, B. 2003 Forecasting monthly 601 streamflow dynamics in the western United States: a nonlinear dynamical approach. Environmental Modelling & Software 18, 721-728.
    • (2003) Environmental Modelling & Software , vol.18 , pp. 721-728
    • Sivakumar, B.1
  • 54
    • 0026938667 scopus 로고
    • The discrete wavelet transform: Wedding the à trous and Mallat algorithms
    • Shensha, M. J. 1992 The discrete wavelet transform: wedding the à trous and Mallat algorithms. Transactions on Signal Processing 40, 2464-2482.
    • (1992) Transactions on Signal Processing , vol.40 , pp. 2464-2482
    • Shensha, M.J.1
  • 55
    • 0032003006 scopus 로고    scopus 로고
    • Stream flow characterization and feature detection using a discrete wavelet transform
    • Smith, L. C., Turcotte, D. L. & Isacks, B. 1998 Stream flow characterization and feature detection using a discrete wavelet transform. Hydrological Processes 12, 233-249.
    • (1998) Hydrological Processes , vol.12 , pp. 233-249
    • Smith, L.C.1    Turcotte, D.L.2    Isacks, B.3
  • 57
  • 58
    • 0037197571 scopus 로고    scopus 로고
    • A datadriven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. 2002 A datadriven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes 16, 1325-1330.
    • (2002) Hydrological Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 59
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using waveletbootstrap-ANN (WBANN) hybrid approach
    • Tiwari, M. K. & Chatterjee, C. 2010 Development of an accurate and reliable hourly flood forecasting model using waveletbootstrap-ANN (WBANN) hybrid approach. Journal of Hydrology 394, 458-470.
    • (2010) Journal of Hydrology , vol.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 60
    • 84876400204 scopus 로고    scopus 로고
    • Improving reliability of river flow forecasting using neural networks, wavelets and self organising maps
    • Tiwari, M. K., Song, K. Y., Chatterjee, C. & Gupta, M. M. 2013 Improving reliability of river flow forecasting using neural networks, wavelets and self organising maps. Journal of Hydroinformatics 15, 486-502.
    • (2013) Journal of Hydroinformatics , vol.15 , pp. 486-502
    • Tiwari, M.K.1    Song, K.Y.2    Chatterjee, C.3    Gupta, M.M.4
  • 62
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the predication of hydrology
    • Wang, W. & Ding, S. 2003 Wavelet network model and its application to the predication of hydrology. Nature and Science 1, 67-71.
    • (2003) Nature and Science , vol.1 , pp. 67-71
    • Wang, W.1    Ding, S.2
  • 63
    • 0037255890 scopus 로고    scopus 로고
    • Three improved neural network models for air quality forecasting
    • Wang, W., Xu, Z. & Lu, J. W. 2003 Three improved neural network models for air quality forecasting. Engineering Computations 20, 192-210.
    • (2003) Engineering Computations , vol.20 , pp. 192-210
    • Wang, W.1    Xu, Z.2    Lu, J.W.3
  • 64
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W. C., Chau, K. W., Cheng, C. T & Qiu, L. 2009 A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology 374, 294-306.
    • (2009) Journal of Hydrology , vol.374 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 65
    • 78650305167 scopus 로고    scopus 로고
    • Wavelet transform method for synthetic generation of daily streamflow
    • Wang, W., Hu, S. & Li, Y 2011 Wavelet transform method for synthetic generation of daily streamflow. Water Resources Management 25, 41-57.
    • (2011) Water Resources Management , vol.25 , pp. 41-57
    • Wang, W.1    Hu, S.2    Li, Y.3
  • 66
    • 84872401589 scopus 로고    scopus 로고
    • Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network
    • Wei, S., Zuo, D. & Song, J. 2012 Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network. Journal of Hydroinformatics 14, 974-991.
    • (2012) Journal of Hydroinformatics , vol.14 , pp. 974-991
    • Wei, S.1    Zuo, D.2    Song, J.3
  • 67
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu, P. S., Chen, S. T & Chang, I. F. 2006 Support vector regression for real-time flood stage forecasting. Journal of Hydrology 328, 704-716.
    • (2006) Journal of Hydrology , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 68
    • 0042740660 scopus 로고    scopus 로고
    • A method for estimating the number of hidden neurons in feed-forward neural networks based on information entropy
    • Yuan, H. C., Xiong, F. L. & Huai, X. Y 2003 A method for estimating the number of hidden neurons in feed-forward neural networks based on information entropy. Computers and Electronics in Agriculture 40, 57-64.
    • (2003) Computers and Electronics in Agriculture , vol.40 , pp. 57-64
    • Yuan, H.C.1    Xiong, F.L.2    Huai, X.Y.3
  • 69
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand, C. M., Burn, D. H. & Simonovic, S. P. 1999 Short term streamflow forecasting using artificial neural networks. Journal of Hydrology 214, 32-48.
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.