메뉴 건너뛰기




Volumn 47, Issue 9, 2014, Pages 3082-3095

Kernel-based hard clustering methods in the feature space with automatic variable weighting

Author keywords

Adaptive distances; Clustering analysis; Feature space; Kernel clustering

Indexed keywords

TOOLS;

EID: 84900833214     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.03.026     Document Type: Article
Times cited : (20)

References (49)
  • 1
    • 80055024879 scopus 로고    scopus 로고
    • Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering
    • R.C. de Amorim, and B. Mirkin Minkowski metric, feature weighting and anomalous cluster initializing in k-means clustering Pattern Recognit. 45 2012 1061 1075
    • (2012) Pattern Recognit , vol.45 , pp. 1061-1075
    • De Amorim, R.C.1    Mirkin, B.2
  • 5
    • 18144401294 scopus 로고    scopus 로고
    • A novel kernel method for clustering
    • F. Camastra, and A. Verri A novel kernel method for clustering IEEE Trans. Neural Netw. 27 2005 801 804
    • (2005) IEEE Trans. Neural Netw , vol.27 , pp. 801-804
    • Camastra, F.1    Verri, A.2
  • 8
  • 10
    • 3543098627 scopus 로고    scopus 로고
    • Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
    • S.C. Chen, and D.Q. Zhang Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure IEEE Trans. Syst. Man Cybern. 34 2004 1907 1916
    • (2004) IEEE Trans. Syst. Man Cybern , vol.34 , pp. 1907-1916
    • Chen, S.C.1    Zhang, D.Q.2
  • 11
    • 0041877699 scopus 로고    scopus 로고
    • A new kernel-based fuzzy clustering approach support vector clustering with cell growing
    • J.H. Chiang, and P.Y. Hao A new kernel-based fuzzy clustering approach support vector clustering with cell growing IEEE Trans. Fuzzy Syst. 11 2003 518 527
    • (2003) IEEE Trans. Fuzzy Syst , vol.11 , pp. 518-527
    • Chiang, J.H.1    Hao, P.Y.2
  • 12
    • 33748922244 scopus 로고    scopus 로고
    • Partitional fuzzy clustering methods based on adaptive quadratic distances
    • F.A.T. De Carvalho, C.P. Tenório, and N.L. Cavalcanti Jr. Partitional fuzzy clustering methods based on adaptive quadratic distances Fuzzy Sets Syst. 157 2006 2833 2857
    • (2006) Fuzzy Sets Syst , vol.157 , pp. 2833-2857
    • De Carvalho, F.A.T.1    Tenório, C.P.2    Cavalcanti Jr., N.L.3
  • 16
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel-based clustering in feature space
    • M. Girolami Mercer kernel-based clustering in feature space IEEE Trans. Neural Netw. 13 2002 780 784
    • (2002) IEEE Trans. Neural Netw , vol.13 , pp. 780-784
    • Girolami, M.1
  • 17
    • 0004241258 scopus 로고    scopus 로고
    • 2nd edition Chapman & Hall Boca Raton
    • A.D. Gordon Classification 2nd edition 1999 Chapman & Hall Boca Raton
    • (1999) Classification
    • Gordon, A.D.1
  • 19
    • 72149122625 scopus 로고    scopus 로고
    • Kernel-based fuzzy clustering and fuzzy clustering a comparative experimental study
    • D. Graves, and W. Pedrycz Kernel-based fuzzy clustering and fuzzy clustering a comparative experimental study Fuzzy Sets Syst. 161 2010 522 543
    • (2010) Fuzzy Sets Syst , vol.161 , pp. 522-543
    • Graves, D.1    Pedrycz, W.2
  • 22
    • 0000008146 scopus 로고
    • Comparing partitions
    • L. Hubert, and P. Arabie Comparing partitions J. Class. 2 1985 193 218
    • (1985) J. Class , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 26
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • L. Jing, M.K. Ng, and J.Z. Huang An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data IEEE Trans. Knowl. Data Eng. 19 2007 1026 1041
    • (2007) IEEE Trans. Knowl. Data Eng , vol.19 , pp. 1026-1041
    • Jing, L.1    Ng, M.K.2    Huang, J.Z.3
  • 27
    • 10644261327 scopus 로고    scopus 로고
    • Evaluation of the performance of clustering algorithms in kernel-induced feature space
    • D.W. Kim, K.Y. Lee, D. Lee, and K.H. Lee Evaluation of the performance of clustering algorithms in kernel-induced feature space Pattern Recognit. 38 2005 607 611
    • (2005) Pattern Recognit , vol.38 , pp. 607-611
    • Kim, D.W.1    Lee, K.Y.2    Lee, D.3    Lee, K.H.4
  • 29
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • T. Kohonen Self-organized formation of topologically correct feature maps Biol. Cybern. 43 1982 59 69
    • (1982) Biol. Cybern , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 30
    • 0025489075 scopus 로고    scopus 로고
    • The self-organizing map
    • T. Kohonen, The self-organizing map, in: Proceedings of the IEEE, vol. 78, pp. 1464-1480
    • Proceedings of the IEEE , vol.78 , pp. 1464-1464
    • Kohonen, T.1
  • 31
    • 78650700300 scopus 로고    scopus 로고
    • Particle swarm optimizer for variable weighting in clustering high-dimensional data
    • Y. Lu, S. Wang, S. Li, and C. Zhou Particle swarm optimizer for variable weighting in clustering high-dimensional data Mach. Learn. 82 2011 43 70
    • (2011) Mach. Learn , vol.82 , pp. 43-70
    • Lu, Y.1    Wang, S.2    Li, S.3    Zhou, C.4
  • 33
    • 0027632248 scopus 로고
    • 'Neural gas' network for vector quantization and its application to time-series prediction
    • T.M. Martinetz, S.G. Berkovich, and K.J. Schulten 'Neural gas' network for vector quantization and its application to time-series prediction IEEE Trans. Neural Netw. 4 1993 558 569
    • (1993) IEEE Trans. Neural Netw , vol.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 38
    • 48149084956 scopus 로고    scopus 로고
    • An efficient kernel matrix evaluation measure
    • C.H. Nguyen, and T.B. Ho An efficient kernel matrix evaluation measure Pattern Recognit. 41 2008 3366 3372
    • (2008) Pattern Recognit , vol.41 , pp. 3366-3372
    • Nguyen, C.H.1    Ho, T.B.2
  • 41
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Scholkopf, A.J. Smola, and K.R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 1998 1299 1319
    • (1998) Neural Comput , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 42
    • 33745176186 scopus 로고    scopus 로고
    • Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets
    • H. Shen, J. Yang, S. Wang, and X. Liu Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets Soft Comput. 10 2006 1061 1073
    • (2006) Soft Comput , vol.10 , pp. 1061-1073
    • Shen, H.1    Yang, J.2    Wang, S.3    Liu, X.4
  • 43
    • 44349127297 scopus 로고    scopus 로고
    • Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm
    • C.Y. Tsai, and C.C. Chiu Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm Comput. Stat. Data Anal. 52 2008 4658 4672
    • (2008) Comput. Stat. Data Anal , vol.52 , pp. 4658-4672
    • Tsai, C.Y.1    Chiu, C.C.2
  • 44
    • 79953039728 scopus 로고    scopus 로고
    • Fuzzy c-means based clustering for linearly and nonlinearly separable data
    • D.M. Tsai, and C.C. Lin Fuzzy c-means based clustering for linearly and nonlinearly separable data Pattern Recognit. 44 2011 1750 1760
    • (2011) Pattern Recognit , vol.44 , pp. 1750-1760
    • Tsai, D.M.1    Lin, C.C.2
  • 45
    • 62349101435 scopus 로고    scopus 로고
    • Gaussian kernel optimization for pattern classification
    • J. Wang, H. Lu, K.N. Plataniotis, and J. Lu Gaussian kernel optimization for pattern classification Pattern Recognit. 42 2009 1237 1247
    • (2009) Pattern Recognit , vol.42 , pp. 1237-1247
    • Wang, J.1    Lu, H.2    Plataniotis, K.N.3    Lu, J.4
  • 47
    • 74449083176 scopus 로고    scopus 로고
    • Semi-supervised clustering with metric learning an adaptive kernel method
    • X. Yin, S. Chen, E. Hu, and D. Zhang Semi-supervised clustering with metric learning an adaptive kernel method Pattern Recognit. 43 2010 1320 1333
    • (2010) Pattern Recognit , vol.43 , pp. 1320-1333
    • Yin, X.1    Chen, S.2    Hu, E.3    Zhang, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.