메뉴 건너뛰기




Volumn 29, Issue 4, 2014, Pages 237-245

A hybrid model for short-term wind speed forecasting based on ensemble empirical mode decomposition and least squares support vector machines

Author keywords

Adaptive disturbance particle swarm optimization; Ensemble empirical mode decomposition(EEMD); Forecasting; Learning effect feedback; Least squares support vector machines; Wind speed

Indexed keywords

PARTICLE SWARM OPTIMIZATION (PSO); WIND;

EID: 84900521858     PISSN: 10006753     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (62)

References (18)
  • 1
    • 77957605946 scopus 로고    scopus 로고
    • Problems and measures of power grid accommodating large scale wind power
    • Zhang Liying, Ye Tinglu, Xin Yaozhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9.
    • (2010) Proceedings of the CSEE , vol.30 , Issue.25 , pp. 1-9
    • Zhang, L.1    Ye, T.2    Xin, Y.3
  • 2
    • 77953280101 scopus 로고    scopus 로고
    • Short-term wind power output forecasting model for economic dispatch of power system incorporating large-scale wind farm
    • Yuan Tiejiang, Chao Qin, Li Yiyan, et al. Short-term wind power output forecasting model for economic dispatch of power system incorporating large-scale wind farm[J]. Proceedings of the CSEE, 2010, 30(13): 23-27.
    • (2010) Proceedings of the CSEE , vol.30 , Issue.13 , pp. 23-27
    • Yuan, T.1    Chao, Q.2    Li, Y.3
  • 3
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • Rajesh G. K, Krithika S. Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable Energy, 2009, 34(5): 1388-1393.
    • (2009) Renewable Energy , vol.34 , Issue.5 , pp. 1388-1393
    • Rajesh, G.K.1    Krithika, S.2
  • 4
    • 77951665319 scopus 로고    scopus 로고
    • ARIMA-based time series model of stochastic wind power generation
    • Peiyuan C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation [J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676.
    • (2010) IEEE Transactions on Power Systems , vol.25 , Issue.2 , pp. 667-676
    • Peiyuan, C.1    Pedersen, T.2    Bak, J.B.3
  • 5
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico using a hybrid ARIMA-ANN model
    • Cadenas E, Rivera W. Wind speed forecasting in three different regions of Mexico using a hybrid ARIMA-ANN model[J]. Renewable Energy, 2010, 35(7): 2732-2738.
    • (2010) Renewable Energy , vol.35 , Issue.7 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 6
    • 79751505649 scopus 로고    scopus 로고
    • Bayesian adaptive combination of short-term wind speed forecasts from neural network models
    • Gong L, Shi J, Zhou J. Bayesian adaptive combination of short-term wind speed forecasts from neural network models[J]. Renewable Energy, 2011, 36(7): 352-359.
    • (2011) Renewable Energy , vol.36 , Issue.7 , pp. 352-359
    • Gong, L.1    Shi, J.2    Zhou, J.3
  • 7
    • 54149110925 scopus 로고    scopus 로고
    • A new strategy for wind speed forecasting using artificial intelligent methods
    • Monfared M, Rastegar H, Kojabadi H M. A new strategy for wind speed forecasting using artificial intelligent methods[J]. Renewable Energy, 2009, 34(5): 845-848.
    • (2009) Renewable Energy , vol.34 , Issue.5 , pp. 845-848
    • Monfared, M.1    Rastegar, H.2    Kojabadi, H.M.3
  • 8
    • 84863176176 scopus 로고    scopus 로고
    • Short-term wind speed forecasting based on support vector machine with similar data
    • Yang Xiyun, Sun Baojun, Zhang Xinfang, et al. Short-term wind speed forecasting based on support vector machine with similar data[J]. Proceedings of the CSEE, 2012, 32(4): 35-41.
    • (2012) Proceedings of the CSEE , vol.32 , Issue.4 , pp. 35-41
    • Yang, X.1    Sun, B.2    Zhang, X.3
  • 9
    • 70350594495 scopus 로고    scopus 로고
    • Short-term wind speed forecasting of wind farm based on least square-support vector machine
    • Du Ying, Lu Jiping, Li Qing, et al. Short-term wind speed forecasting of wind farm based on least square-support vector machine[J]. Power System Technology, 2008, 32(15): 62-66.
    • (2008) Power System Technology , vol.32 , Issue.15 , pp. 62-66
    • Du, Y.1    Lu, J.2    Li, Q.3
  • 10
    • 70350584960 scopus 로고    scopus 로고
    • Short-term power prediction of a wind farm based on wavelet analysis
    • Wang Lijie, Dong Lei, Liao Xiaozhong, et al, Short-term power prediction of a wind farm based on wavelet analysis[J]. Proceedings of the CSEE, 2009, 29 (28): 30-33.
    • (2009) Proceedings of the CSEE , vol.29 , Issue.28 , pp. 30-33
    • Wang, L.1    Dong, L.2    Liao, X.3
  • 11
    • 84863508830 scopus 로고    scopus 로고
    • A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • Liu H, Chen C, Tian H Q, et al. A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks[J]. Renewable Energy, 2012, 48: 545-556.
    • (2012) Renewable Energy , vol.48 , pp. 545-556
    • Liu, H.1    Chen, C.2    Tian, H.Q.3
  • 12
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise-assisted data analysis method
    • Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
    • (2009) Advances in Adaptive Data Analysis , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 13
    • 60449093916 scopus 로고    scopus 로고
    • Modeling and analysis of prediction of wind power generation in the large wind farm based on chaotic time series
    • Dong Lei, Wang Lijie, Gao Shuang. Modeling and analysis of prediction of wind power generation in the large wind farm based on chaotic time series[J]. Transactions of China Electrotechnical Society. 2008. 23(12): 125-129.
    • (2008) Transactions of China Electrotechnical Society , vol.23 , Issue.12 , pp. 125-129
    • Dong, L.1    Wang, L.2    Gao, S.3
  • 14
    • 65449137999 scopus 로고    scopus 로고
    • Application of LSSVM optimized by genetic algorithm to modeling of switched reluctance motor
    • Sang Wanfeng, Zhao Shengdun, Shen Yajing. Application of LSSVM optimized by genetic algorithm to modeling of switched reluctance motor[J]. 2009, 29(12): 65-69.
    • (2009) , vol.29 , Issue.12 , pp. 65-69
    • Sang, W.1    Zhao, S.2    Shen, Y.3
  • 15
    • 77349125855 scopus 로고    scopus 로고
    • Soft measurement method for oil holdup of two phase flow based on least squares support vector machine and particle swarm optimization
    • Zhang Chunxiao, Zhang Tao. Soft measurement method for oil holdup of two phase flow based on least squares support vector machine and particle swarm optimization[J]. Proceedings of the CSEE, 2010, 30(2): 86-91.
    • (2010) Proceedings of the CSEE , vol.30 , Issue.2 , pp. 86-91
    • Zhang, C.1    Zhang, T.2
  • 16
    • 78649279283 scopus 로고    scopus 로고
    • Particle swarm optimization algorithm with chaotic inertia weight adjusting strategy
    • Wu Qiubo, Wang Yuncheng, Zhao Qiuliang, et al. Particle swarm optimization algorithm with chaotic inertia weight adjusting strategy[J]. Computer Engineering and Applications, 2009, 45(7): 49-51.
    • (2009) Computer Engineering and Applications , vol.45 , Issue.7 , pp. 49-51
    • Wu, Q.1    Wang, Y.2    Zhao, Q.3
  • 17
    • 84900491673 scopus 로고    scopus 로고
    • Chinese source
    • 2008.
    • (2008)
  • 18
    • 84891521645 scopus 로고    scopus 로고
    • Short-term wind speed forecasting of neural network based on phase space reconstruction
    • Liao Zhiqiang, Li Taifu, Yu Dejun, et al. Short-term wind speed forecasting of neural network based on phase space reconstruction[J]. Journal of Jiangnan University (Natural Science Edition), 2012, 11(1): 14-18.
    • (2012) Journal of Jiangnan University (Natural Science Edition) , vol.11 , Issue.1 , pp. 14-18
    • Liao, Z.1    Li, T.2    Yu, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.