메뉴 건너뛰기




Volumn , Issue , 2013, Pages 91-99

Classifying political orientation on Twitter: It's not easy!

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY LEVEL; DATA COLLECTION; POLITICAL ORIENTATION;

EID: 84900461560     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (233)

References (15)
  • 2
    • 79960392344 scopus 로고    scopus 로고
    • Amazon's mechanical turk: A new source of inexpensive, yet high-quality, data?
    • Buhrmester, M.; Kwang, T.; and Gosling, S. D. 2011. Amazon's mechanical turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science 6(1):3-5.
    • (2011) Perspectives on Psychological Science , vol.6 , Issue.1 , pp. 3-5
    • Buhrmester, M.1    Kwang, T.2    Gosling, S.D.3
  • 8
    • 84899425010 scopus 로고    scopus 로고
    • What's in a name? Using first names as features for gender inference in twitter
    • Liu, W., and Ruths, D. 2013. What's in a name? using first names as features for gender inference in twitter. In Symposium on Analyzing Microtext.
    • (2013) Symposium on Analyzing Microtext
    • Liu, W.1    Ruths, D.2
  • 13
    • 78851469710 scopus 로고    scopus 로고
    • Using amazon mechanical turk for linguistic research
    • Schnoebelen, T., and Kuperman, V. 2010. Using amazon mechanical turk for linguistic research. Psihologija 43(4):441-464.
    • (2010) Psihologija , vol.43 , Issue.4 , pp. 441-464
    • Schnoebelen, T.1    Kuperman, V.2
  • 15
    • 84890629874 scopus 로고    scopus 로고
    • Homophily and latent attribute inference: Inferring latent attributes of twitter users from neighbors
    • Zamal, F. A.; Liu, W.; and Ruths, D. 2012. Homophily and latent attribute inference: Inferring latent attributes of twitter users from neighbors. In The International Conference on Weblogs and Social Media. Canada
    • (2012) The International Conference on Weblogs and Social Media
    • Zamal, F.A.1    Liu, W.2    Ruths, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.