메뉴 건너뛰기




Volumn 11, Issue SUPPL.1, 2014, Pages

Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data

Author keywords

Constructive neural networks; Feature Selection; Genetic algorithms; Microarray

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; DNA MICROARRAY; FEMALE; GENETIC DATABASE; GENETICS; HUMAN; MALE; NEOPLASM; STATISTICS; TUMOR GENE;

EID: 84900310308     PISSN: None     EISSN: 17424682     Source Type: Journal    
DOI: 10.1186/1742-4682-11-S1-S7     Document Type: Article
Times cited : (24)

References (47)
  • 1
    • 4944248113 scopus 로고    scopus 로고
    • Prediction of Clinical Outcome Using Gene Ex-pression Profiling and Artificial Neural Networks for Patients with Neuroblastom
    • 10.1158/0008-5472.CAN-04-0695 15466177
    • Prediction of Clinical Outcome Using Gene Ex-pression Profiling and Artificial Neural Networks for Patients with Neuroblastom. Wei JS, Greer BT, Westermann F, Steinberg SM, Son CG, Cancer Research 2004 64 6883 6891 10.1158/0008-5472.CAN-04-0695 15466177
    • (2004) Cancer Research , vol.64 , pp. 6883-6891
    • Wei, J.S.1    Greer, B.T.2    Westermann, F.3    Steinberg, S.M.4    Son, C.G.5
  • 3
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • Bayesian factor regression models in the "large p, small n" paradigm. West M, Bayesian statistics 2003 7 2003 723 732
    • (2003) Bayesian Statistics , vol.7 , Issue.2003 , pp. 723-732
    • West, M.1
  • 4
    • 1942438016 scopus 로고    scopus 로고
    • Rules of evidence for cancer molecular-marker discovery and validation
    • 10.1038/nrc1322 15057290
    • Rules of evidence for cancer molecular-marker discovery and validation. Ransohoff D, Nature Reviews Cancer 2004 4 4 309 314 10.1038/nrc1322 15057290
    • (2004) Nature Reviews Cancer , vol.4 , Issue.4 , pp. 309-314
    • Ransohoff, D.1
  • 5
    • 44349110097 scopus 로고    scopus 로고
    • Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach
    • 10.1016/j.artmed.2008.03.001 18420392
    • Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modelling approach. Lancashire LJ, Rees RC, Ball GR, Artificial Intelligence In Medicine 2008 43 2 99 111 10.1016/j.artmed.2008.03.001 18420392
    • (2008) Artificial Intelligence in Medicine , vol.43 , Issue.2 , pp. 99-111
    • Lancashire, L.J.1    Rees, R.C.2    Ball, G.R.3
  • 6
    • 84900319861 scopus 로고    scopus 로고
    • Optimal gene subset selection using the modified SFFS algorithm for tumor classification
    • Optimal gene subset selection using the modified SFFS algorithm for tumor classification. Peng H, Fu Y, Liu J, Fang X, Jiang C, Neural Computing and Applications 2012 1 8
    • (2012) Neural Computing and Applications , pp. 1-8
    • Peng, H.1    Fu, Y.2    Liu, J.3    Fang, X.4    Jiang, C.5
  • 9
    • 12344273544 scopus 로고    scopus 로고
    • Object detection using feature subset selection
    • 10.1016/j.patcog.2004.03.013
    • Object detection using feature subset selection. Sun Z, Bebis G, Miller R, Pattern Recognition 2004 37 11 2165 2176 10.1016/j.patcog.2004.03.013
    • (2004) Pattern Recognition , vol.37 , Issue.11 , pp. 2165-2176
    • Sun, Z.1    Bebis, G.2    Miller, R.3
  • 10
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • 10.1093/bioinformatics/18.3.413 11934740
    • A mixture model-based approach to the clustering of microarray expression data. McLachlan G, Bean R, Peel D, Bioinformatics 2002 18 3 413 422 10.1093/bioinformatics/18.3.413 11934740
    • (2002) Bioinformatics , vol.18 , Issue.3 , pp. 413-422
    • McLachlan, G.1    Bean, R.2    Peel, D.3
  • 11
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • 10.1093/bioinformatics/bti499 15905277
    • Prediction error estimation: a comparison of resampling methods. Molinaro A, Simon R, Pfeiffer R, Bioinformatics 2005 21 15 3301 3307 10.1093/bioinformatics/bti499 15905277
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3301-3307
    • Molinaro, A.1    Simon, R.2    Pfeiffer, R.3
  • 12
    • 84872965827 scopus 로고    scopus 로고
    • Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood
    • 23369435
    • Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood. Zhang F, Kaufman HL, Deng Y, Drabier R, BMC Medical Genomics 2013 6 1 23369435
    • (2013) BMC Medical Genomics , vol.6 , Issue.1
    • Zhang, F.1    Kaufman, H.L.2    Deng, Y.3    Drabier, R.4
  • 13
    • 79960903911 scopus 로고    scopus 로고
    • Hybrid genetic algorithm-neural network: Feature extraction for unpreprocessed microarray data
    • 10.1016/j.artmed.2011.06.008 21775110
    • Hybrid genetic algorithm-neural network: Feature extraction for unpreprocessed microarray data. Tong DL, Schierz AC, Artificial Intelligence in Medicine 2011 53 47 56 10.1016/j.artmed.2011.06.008 21775110
    • (2011) Artificial Intelligence in Medicine , vol.53 , pp. 47-56
    • Tong, D.L.1    Schierz, A.C.2
  • 15
    • 84866776633 scopus 로고    scopus 로고
    • Stable feature selection and classification algorithms for multiclass microarray data
    • 23031190
    • Stable feature selection and classification algorithms for multiclass microarray data. Student S, Fujarewicz K, Biology Direct 2012 7 23031190
    • (2012) Biology Direct , vol.7
    • Student, S.1    Fujarewicz, K.2
  • 16
    • 39149115688 scopus 로고    scopus 로고
    • Bioinformatics applications for pathway analysis of microarray data
    • 10.1016/j.copbio.2007.11.005 18207385
    • Bioinformatics applications for pathway analysis of microarray data. Werner T, Current Opinion in Biotechnology 2008 19 50 54 10.1016/j.copbio.2007. 11.005 18207385
    • (2008) Current Opinion in Biotechnology , vol.19 , pp. 50-54
    • Werner, T.1
  • 17
    • 84855953161 scopus 로고    scopus 로고
    • C-Mantec: A novel constructive neural network algorithm incorporating competition between neurons
    • 22075034
    • C-Mantec: A novel constructive neural network algorithm incorporating competition between neurons. Subirats JL, Franco L, Jerez JM, Neural Networks 2012 26 130 140 22075034
    • (2012) Neural Networks , vol.26 , pp. 130-140
    • Subirats, J.L.1    Franco, L.2    Jerez, J.M.3
  • 18
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • 10.1093/bioinformatics/btm344 17720704
    • A review of feature selection techniques in bioinformatics. Saeys Y, Inza I, Larranãga P, Bioinformatics 2007 23 19 2507 2517 10.1093/ bioinformatics/btm344 17720704
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranãga, P.3
  • 19
    • 77955334667 scopus 로고    scopus 로고
    • A hybrid LDA and genetic algorithm for gene selection and classification of microarray data
    • 10.1016/j.neucom.2010.03.024
    • A hybrid LDA and genetic algorithm for gene selection and classification of microarray data. Huerta EB, Duval B, Hao JK, Neurocomputing 2010 73 2375 2383 10.1016/j.neucom.2010.03.024
    • (2010) Neurocomputing , vol.73 , pp. 2375-2383
    • Huerta, E.B.1    Duval, B.2    Hao, J.K.3
  • 20
    • 84870267223 scopus 로고
    • The generalization of Student́s problem when several different population variances are involved
    • 10.1093/biomet/34.1-2.28 20287819
    • The generalization of Student́s problem when several different population variances are involved. Welch BL, Biometrika 1947 34 1-2 28 35 10.1093/biomet/34.1-2.28 20287819
    • (1947) Biometrika , vol.34 , Issue.1-2 , pp. 28-35
    • Welch, B.L.1
  • 22
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • 16119262
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Peng H, Long F, Ding C, IEEE Transactions on Pattern Analysis and Machine Intelligence 2005 27 8 1226 1238 16119262
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 24
    • 0024621174 scopus 로고
    • On Estimation of Entropy and Mutual Information of Continuous Distributions
    • 10.1016/0165-1684(89)90132-1
    • On Estimation of Entropy and Mutual Information of Continuous Distributions. Moddemeijer R, Signal Processing 1989 16 3 233 246 10.1016/0165-1684(89)90132-1
    • (1989) Signal Processing , vol.16 , Issue.3 , pp. 233-246
    • Moddemeijer, R.1
  • 25
    • 0007133880 scopus 로고
    • A "thermal" perceptron learning rule
    • 10.1162/neco.1992.4.6.946
    • A "thermal" perceptron learning rule. Frean M, Neural Comput. 1992 4 6 946 957 10.1162/neco.1992.4.6.946
    • (1992) Neural Comput. , vol.4 , Issue.6 , pp. 946-957
    • Frean, M.1
  • 26
    • 33749251505 scopus 로고    scopus 로고
    • A cooperative constructive method for neural networks for pattern recognition
    • 10.1016/j.patcog.2006.06.024
    • A cooperative constructive method for neural networks for pattern recognition. García-Pedrajas N, Ortiz-Boyer D, Pattern Recogn. 2007 40 80 98 10.1016/j.patcog.2006.06.024
    • (2007) Pattern Recogn. , vol.40 , pp. 80-98
    • García-Pedrajas, N.1    Ortiz-Boyer, D.2
  • 27
    • 57149137352 scopus 로고    scopus 로고
    • A New Decomposition Algorithm for Threshold Synthesis and Generalization of Boolean Functions
    • A New Decomposition Algorithm for Threshold Synthesis and Generalization of Boolean Functions. Subirats JL, Jerez JM, Franco L, IEEE Transactions on Circuits and Systems 2008 1 55 3188 3196
    • (2008) IEEE Transactions on Circuits and Systems , vol.1 , Issue.55 , pp. 3188-3196
    • Subirats, J.L.1    Jerez, J.M.2    Franco, L.3
  • 28
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • 10.1016/j.ins.2009.12.010
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. García S, Fernández A, Luengo J, Herrera F, Information Sciences 2010 180 10 2044 2064 10.1016/j.ins.2009.12.010
    • (2010) Information Sciences , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 29
    • 33750735688 scopus 로고    scopus 로고
    • Comparative Effects of DHEA and DHT on Gene Expression in Human LNCaP Prostate Cancer Cells
    • 17094431
    • Comparative Effects of DHEA and DHT on Gene Expression in Human LNCaP Prostate Cancer Cells. Steele VE, Arnold JT, Le H, Izmirlian G, Blackman MR, Anticancer Research 2006 26 5A 3205 3215 17094431
    • (2006) Anticancer Research , vol.26 , Issue.5 A , pp. 3205-3215
    • Steele, V.E.1    Arnold, J.T.2    Le, H.3    Izmirlian, G.4    Blackman, M.R.5
  • 30
    • 0029907962 scopus 로고    scopus 로고
    • Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells
    • 10.1073/pnas.93.21.11669 8876194
    • Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells. Sheng S, Carey J, Seftor EA, Dias L, Hendrix MJ, Sager R, Proc Natl Acad Sci USA 1996 93 21 11669 74 10.1073/pnas.93.21. 11669 8876194
    • (1996) Proc Natl Acad Sci USA , vol.93 , Issue.21 , pp. 11669-11674
    • Sheng, S.1    Carey, J.2    Seftor, E.A.3    Dias, L.4    Hendrix, M.J.5    Sager, R.6
  • 36
    • 77951718967 scopus 로고    scopus 로고
    • Proteomic Characterization of Novel Alternative Splice Variant Proteins in Human Epidermal Growth Factor Receptor 2 neu Induced Breast Cancers
    • 10.1158/0008-5472.CAN-09-2631 20388783
    • Proteomic Characterization of Novel Alternative Splice Variant Proteins in Human Epidermal Growth Factor Receptor 2 neu Induced Breast Cancers. Menon R, Omenn GS, Cancer Research 2010 70 9 3440 3449 10.1158/0008-5472.CAN-09-2631 20388783
    • (2010) Cancer Research , vol.70 , Issue.9 , pp. 3440-3449
    • Menon, R.1    Omenn, G.S.2
  • 37
    • 0033571259 scopus 로고    scopus 로고
    • Enforced CD19 Expression Leads to Growth Inhibition and Reduced Tumorigenicity
    • 10552966
    • Enforced CD19 Expression Leads to Growth Inhibition and Reduced Tumorigenicity. Mahmoud MS, Fujii R, Ishikawa H, Kawano MM, Blood 1999 94 10 3551 3558 10552966
    • (1999) Blood , vol.94 , Issue.10 , pp. 3551-3558
    • Mahmoud, M.S.1    Fujii, R.2    Ishikawa, H.3    Kawano, M.M.4
  • 38
    • 70249100266 scopus 로고    scopus 로고
    • HOXA9 Modulates Its Oncogenic Partner Meis1 to Influence Normal Hematopoiesis
    • 10.1128/MCB.00545-09 19620287
    • HOXA9 Modulates Its Oncogenic Partner Meis1 To Influence Normal Hematopoiesis. Hu YL, Fong S, Ferrell C, Largman C, Shen WF, Molecular and Cellular Biology 2009 29 18 5181 5192 10.1128/MCB.00545-09 19620287
    • (2009) Molecular and Cellular Biology , vol.29 , Issue.18 , pp. 5181-5192
    • Hu, Y.L.1    Fong, S.2    Ferrell, C.3    Largman, C.4    Shen, W.F.5
  • 41
    • 75149178749 scopus 로고    scopus 로고
    • A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data
    • 20122224
    • A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data. Yang P, Zhou BB, Zhang Z, Zomaya AY, BMC Bioinformatics 2010 11 1 20122224
    • (2010) BMC Bioinformatics , vol.11 , Issue.1
    • Yang, P.1    Zhou, B.B.2    Zhang, Z.3    Zomaya, A.Y.4
  • 42
    • 67649363335 scopus 로고    scopus 로고
    • Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis
    • 10.1016/j.ipl.2009.03.029
    • Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis. García-Nieto J, Alba E, Jourdan L, Talbi E, Information Processing Letters 2009 109 16 887 896 10.1016/j.ipl.2009.03.029
    • (2009) Information Processing Letters , vol.109 , Issue.16 , pp. 887-896
    • García-Nieto, J.1    Alba, E.2    Jourdan, L.3    Talbi, E.4
  • 43
    • 3142521566 scopus 로고    scopus 로고
    • Joint classifier and feature optimization for comprehensive cancer diagnosis using gene expression data
    • 10.1089/1066527041410463 15285890
    • Joint classifier and feature optimization for comprehensive cancer diagnosis using gene expression data. Krishnapuram B, Carin L, Hartemink A, Journal of Computational Biology 2004 11 2-3 227 242 10.1089/1066527041410463 15285890
    • (2004) Journal of Computational Biology , vol.11 , Issue.2-3 , pp. 227-242
    • Krishnapuram, B.1    Carin, L.2    Hartemink, A.3
  • 44
    • 34948844661 scopus 로고    scopus 로고
    • A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue
    • 10.1016/j.artmed.2007.07.008 17851055
    • A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Chen Z, Li J, Wei L, Artificial Intelligence in Medicine 2007 41 2 161 175 10.1016/j.artmed.2007. 07.008 17851055
    • (2007) Artificial Intelligence in Medicine , vol.41 , Issue.2 , pp. 161-175
    • Chen, Z.1    Li, J.2    Wei, L.3
  • 45
    • 37549069306 scopus 로고    scopus 로고
    • Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data
    • 10.1016/j.compbiolchem.2007.10.001 18093877
    • Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data. Shen Q, Shi WM, Kong W, Computational Biology and Chemistry 2008 32 53 60 10.1016/j.compbiolchem. 2007.10.001 18093877
    • (2008) Computational Biology and Chemistry , vol.32 , pp. 53-60
    • Shen, Q.1    Shi, W.M.2    Kong, W.3
  • 47
    • 32544441572 scopus 로고    scopus 로고
    • Transcriptional signatures of normal human mammary epithelial cells in response to benzo[a]pyrene exposure: A comparison of three microarray platforms
    • 10.1089/omi.2005.9.334 16402892
    • Transcriptional signatures of normal human mammary epithelial cells in response to benzo[a]pyrene exposure: a comparison of three microarray platforms. Gwinn M, Keshava C, Olivero O, Humsi J, Poirier M, Weston A, OMICS 2005 9 4 334 50 10.1089/omi.2005.9.334 16402892
    • (2005) OMICS , vol.9 , Issue.4 , pp. 334-350
    • Gwinn, M.1    Keshava, C.2    Olivero, O.3    Humsi, J.4    Poirier, M.5    Weston, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.