메뉴 건너뛰기




Volumn 455, Issue 1, 2014, Pages 92-96

Conductive multilayered polyelectrolyte films improved performance in microbial fuel cells (MFCs)

Author keywords

GE; Layer by layer; MFC; PAH

Indexed keywords

ANODES; GERMANIUM; MICROBIAL FUEL CELLS; POLYCYCLIC AROMATIC HYDROCARBONS;

EID: 84900030545     PISSN: 09277757     EISSN: 18734359     Source Type: Journal    
DOI: 10.1016/j.colsurfa.2014.04.030     Document Type: Article
Times cited : (35)

References (28)
  • 1
    • 77957336587 scopus 로고    scopus 로고
    • Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial
    • Osman M., Shah A., Walsh F. Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial. Biosens. Bioelectron. 2010, 26:953-963.
    • (2010) Biosens. Bioelectron. , vol.26 , pp. 953-963
    • Osman, M.1    Shah, A.2    Walsh, F.3
  • 2
    • 33750443594 scopus 로고    scopus 로고
    • Application of bacterial biocathodes in microbial fuel cells
    • He Z., Angenent L.T. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 2006, 18:2009-2015.
    • (2006) Electroanalysis , vol.18 , pp. 2009-2015
    • He, Z.1    Angenent, L.T.2
  • 3
    • 77953160485 scopus 로고    scopus 로고
    • Microbial fuel cells, a current review
    • Franks A.E., Nevin K. Microbial fuel cells, a current review. Energies 2010, 3:899-919.
    • (2010) Energies , vol.3 , pp. 899-919
    • Franks, A.E.1    Nevin, K.2
  • 4
    • 84871922201 scopus 로고    scopus 로고
    • Multilayered hollow polyelectrolyte capsules improved performances in microbial fuel cells (MFCs)
    • Ge L., Ren J., Wang W., Yao C., Ji J., Jia Y., Ba L. Multilayered hollow polyelectrolyte capsules improved performances in microbial fuel cells (MFCs). Polymer 2012, 292-296.
    • (2012) Polymer , pp. 292-296
    • Ge, L.1    Ren, J.2    Wang, W.3    Yao, C.4    Ji, J.5    Jia, Y.6    Ba, L.7
  • 5
    • 38949101646 scopus 로고    scopus 로고
    • Polypyrrole-coated reticulated vitreous carbon as anode in microbial fuel cell for higher energy output
    • Yuan Y., Kim S. Polypyrrole-coated reticulated vitreous carbon as anode in microbial fuel cell for higher energy output. Bull. Korean Chem. Soc. 2008, 29:168-172.
    • (2008) Bull. Korean Chem. Soc. , vol.29 , pp. 168-172
    • Yuan, Y.1    Kim, S.2
  • 6
    • 34250711453 scopus 로고    scopus 로고
    • Polypyrrole coated carbon nanotubes: synthesis, characterization, and enhanced electrical properties
    • Sahoo N.G., Jung Y.C., So H.H., Cho J.W. Polypyrrole coated carbon nanotubes: synthesis, characterization, and enhanced electrical properties. Synth. Met. 2007, 157:374-379.
    • (2007) Synth. Met. , vol.157 , pp. 374-379
    • Sahoo, N.G.1    Jung, Y.C.2    So, H.H.3    Cho, J.W.4
  • 7
    • 84880094692 scopus 로고    scopus 로고
    • Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode
    • Bagheri H., Afkhami A., Khoshsafar H., Rezaei M., Shirzadmehr A. Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sensors Actuators B: Chem. 2013, 186:451-460.
    • (2013) Sensors Actuators B: Chem. , vol.186 , pp. 451-460
    • Bagheri, H.1    Afkhami, A.2    Khoshsafar, H.3    Rezaei, M.4    Shirzadmehr, A.5
  • 8
    • 77049083353 scopus 로고    scopus 로고
    • A novel layer-by-layer self-assembled carbon nanotube-based anode: preparation, characterization, and application in microbial fuel cell
    • Sun J.J., Zhao H.Z., Yang Q.Z., Song J., Xue A. A novel layer-by-layer self-assembled carbon nanotube-based anode: preparation, characterization, and application in microbial fuel cell. Electrochim. Acta 2010, 55:3041-3047.
    • (2010) Electrochim. Acta , vol.55 , pp. 3041-3047
    • Sun, J.J.1    Zhao, H.Z.2    Yang, Q.Z.3    Song, J.4    Xue, A.5
  • 9
    • 84861702089 scopus 로고    scopus 로고
    • Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells
    • Yuan Y., Zhou S., Zhao B., Zhuang L., Wang Y. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresour. Technol. 2012, 116:453-458.
    • (2012) Bioresour. Technol. , vol.116 , pp. 453-458
    • Yuan, Y.1    Zhou, S.2    Zhao, B.3    Zhuang, L.4    Wang, Y.5
  • 10
    • 68149151014 scopus 로고    scopus 로고
    • Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes
    • Tsai H.Y., Wu C.C., Lee C.Y., Shih E.P. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J. Power Sources 2009, 194:199-205.
    • (2009) J. Power Sources , vol.194 , pp. 199-205
    • Tsai, H.Y.1    Wu, C.C.2    Lee, C.Y.3    Shih, E.P.4
  • 11
    • 34249326597 scopus 로고    scopus 로고
    • Carbon nanotube/polyaniline composite as anode material for microbial fuel cells
    • Qiao Y., Li C.M., Bao S.-J., Bao Q.L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 2007, 170:79-84.
    • (2007) J. Power Sources , vol.170 , pp. 79-84
    • Qiao, Y.1    Li, C.M.2    Bao, S.-J.3    Bao, Q.L.4
  • 13
    • 79953651903 scopus 로고    scopus 로고
    • Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell
    • Liu X.W., Sun X.-F., Huang Y.X., Sheng G.P., Wang S.G., Yu H.Q. Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell. Energy Environ. Sci. 2011, 4:1422-1427.
    • (2011) Energy Environ. Sci. , vol.4 , pp. 1422-1427
    • Liu, X.W.1    Sun, X.-F.2    Huang, Y.X.3    Sheng, G.P.4    Wang, S.G.5    Yu, H.Q.6
  • 14
    • 79955465102 scopus 로고    scopus 로고
    • A graphene modified anode to improve the performance of microbial fuel cells
    • Zhang Y., Mo G., Li X., Zhang W., Zhang J., Ye J., Huang X., Yu C. A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources 2011, 196:5402-5407.
    • (2011) J. Power Sources , vol.196 , pp. 5402-5407
    • Zhang, Y.1    Mo, G.2    Li, X.3    Zhang, W.4    Zhang, J.5    Ye, J.6    Huang, X.7    Yu, C.8
  • 15
    • 79955628225 scopus 로고    scopus 로고
    • Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems
    • Huang Y.X., Liu X.W., Xie J.F., Sheng G.-P., Wang G.Y., Zhang Y.Y., Xu A.W., Yu H.Q. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chem. Commun. 2011, 47:5795-5797.
    • (2011) Chem. Commun. , vol.47 , pp. 5795-5797
    • Huang, Y.X.1    Liu, X.W.2    Xie, J.F.3    Sheng, G.-P.4    Wang, G.Y.5    Zhang, Y.Y.6    Xu, A.W.7    Yu, H.Q.8
  • 16
    • 79952991664 scopus 로고    scopus 로고
    • An overview of graphene in energy production and storage applications
    • Brownson D.A., Kampouris D.K., Banks C.E. An overview of graphene in energy production and storage applications. J. Power Sources 2011, 196:4873-4885.
    • (2011) J. Power Sources , vol.196 , pp. 4873-4885
    • Brownson, D.A.1    Kampouris, D.K.2    Banks, C.E.3
  • 17
    • 36048978668 scopus 로고    scopus 로고
    • Sulfonated poly(styrene-co-maleic anhydride)-poly(ethylene glycol)-silica nanocomposite polyelectrolyte membranes for fuel cell applications
    • Saxena A., Tripathi B.P., Shahi V.K. Sulfonated poly(styrene-co-maleic anhydride)-poly(ethylene glycol)-silica nanocomposite polyelectrolyte membranes for fuel cell applications. J. Phys. Chem. B 2007, 111:12454-12461.
    • (2007) J. Phys. Chem. B , vol.111 , pp. 12454-12461
    • Saxena, A.1    Tripathi, B.P.2    Shahi, V.K.3
  • 18
    • 84865283298 scopus 로고    scopus 로고
    • Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether sulfone) membranes
    • Choi T.H., Won Y.B., Lee J.-W., Shin D.W., Lee Y.M., Kim M., Park H.B. Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether sulfone) membranes. J. Power Sources 2012, 269-279.
    • (2012) J. Power Sources , pp. 269-279
    • Choi, T.H.1    Won, Y.B.2    Lee, J.-W.3    Shin, D.W.4    Lee, Y.M.5    Kim, M.6    Park, H.B.7
  • 19
    • 1842425198 scopus 로고    scopus 로고
    • Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells
    • Smitha B., Sridhar S., Khan A. Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 2004, 37:2233-2239.
    • (2004) Macromolecules , vol.37 , pp. 2233-2239
    • Smitha, B.1    Sridhar, S.2    Khan, A.3
  • 21
    • 44049115952 scopus 로고
    • Creation and structural comparison of ultrathin film assemblies: transferred freely suspended films and Langmuir-Blodgett films of liquid crystals
    • Decher G., Maclennan J., Sohling U., Reibel J. Creation and structural comparison of ultrathin film assemblies: transferred freely suspended films and Langmuir-Blodgett films of liquid crystals. Thin Solid Films 1992, 210:504-507.
    • (1992) Thin Solid Films , vol.210 , pp. 504-507
    • Decher, G.1    Maclennan, J.2    Sohling, U.3    Reibel, J.4
  • 22
    • 25144450808 scopus 로고    scopus 로고
    • Preparation and characterization of self-assembled polyelectrolyte multilayered films on electrospun nanofibers
    • Ding B., Fujimoto K., Shiratori S. Preparation and characterization of self-assembled polyelectrolyte multilayered films on electrospun nanofibers. Thin Solid Films 2005, 491:23-28.
    • (2005) Thin Solid Films , vol.491 , pp. 23-28
    • Ding, B.1    Fujimoto, K.2    Shiratori, S.3
  • 23
    • 0031554196 scopus 로고    scopus 로고
    • Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions
    • Stockton W., Rubner M. Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 1997, 30:2717-2725.
    • (1997) Macromolecules , vol.30 , pp. 2717-2725
    • Stockton, W.1    Rubner, M.2
  • 24
    • 0030848621 scopus 로고    scopus 로고
    • Fuzzy nanoassemblies: toward layered polymeric multicomposites
    • Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997, 277:1232-1237.
    • (1997) Science , vol.277 , pp. 1232-1237
    • Decher, G.1
  • 25
    • 38649105150 scopus 로고    scopus 로고
    • The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell
    • Zhang T., Cui C., Chen S., Yang H., Shen P. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Commun. 2008, 10:293-297.
    • (2008) Electrochem. Commun. , vol.10 , pp. 293-297
    • Zhang, T.1    Cui, C.2    Chen, S.3    Yang, H.4    Shen, P.5
  • 27
    • 34447523820 scopus 로고    scopus 로고
    • Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
    • Schröder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 2007, 9:2619-2629.
    • (2007) Phys. Chem. Chem. Phys. , vol.9 , pp. 2619-2629
    • Schröder, U.1
  • 28
    • 19444367096 scopus 로고    scopus 로고
    • Microbial fuel cells: novel biotechnology for energy generation
    • Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23:291-298.
    • (2005) Trends Biotechnol. , vol.23 , pp. 291-298
    • Rabaey, K.1    Verstraete, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.