-
1
-
-
77957336587
-
Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial
-
Osman M., Shah A., Walsh F. Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial. Biosens. Bioelectron. 2010, 26:953-963.
-
(2010)
Biosens. Bioelectron.
, vol.26
, pp. 953-963
-
-
Osman, M.1
Shah, A.2
Walsh, F.3
-
2
-
-
33750443594
-
Application of bacterial biocathodes in microbial fuel cells
-
He Z., Angenent L.T. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 2006, 18:2009-2015.
-
(2006)
Electroanalysis
, vol.18
, pp. 2009-2015
-
-
He, Z.1
Angenent, L.T.2
-
3
-
-
77953160485
-
Microbial fuel cells, a current review
-
Franks A.E., Nevin K. Microbial fuel cells, a current review. Energies 2010, 3:899-919.
-
(2010)
Energies
, vol.3
, pp. 899-919
-
-
Franks, A.E.1
Nevin, K.2
-
4
-
-
84871922201
-
Multilayered hollow polyelectrolyte capsules improved performances in microbial fuel cells (MFCs)
-
Ge L., Ren J., Wang W., Yao C., Ji J., Jia Y., Ba L. Multilayered hollow polyelectrolyte capsules improved performances in microbial fuel cells (MFCs). Polymer 2012, 292-296.
-
(2012)
Polymer
, pp. 292-296
-
-
Ge, L.1
Ren, J.2
Wang, W.3
Yao, C.4
Ji, J.5
Jia, Y.6
Ba, L.7
-
5
-
-
38949101646
-
Polypyrrole-coated reticulated vitreous carbon as anode in microbial fuel cell for higher energy output
-
Yuan Y., Kim S. Polypyrrole-coated reticulated vitreous carbon as anode in microbial fuel cell for higher energy output. Bull. Korean Chem. Soc. 2008, 29:168-172.
-
(2008)
Bull. Korean Chem. Soc.
, vol.29
, pp. 168-172
-
-
Yuan, Y.1
Kim, S.2
-
6
-
-
34250711453
-
Polypyrrole coated carbon nanotubes: synthesis, characterization, and enhanced electrical properties
-
Sahoo N.G., Jung Y.C., So H.H., Cho J.W. Polypyrrole coated carbon nanotubes: synthesis, characterization, and enhanced electrical properties. Synth. Met. 2007, 157:374-379.
-
(2007)
Synth. Met.
, vol.157
, pp. 374-379
-
-
Sahoo, N.G.1
Jung, Y.C.2
So, H.H.3
Cho, J.W.4
-
7
-
-
84880094692
-
Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode
-
Bagheri H., Afkhami A., Khoshsafar H., Rezaei M., Shirzadmehr A. Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sensors Actuators B: Chem. 2013, 186:451-460.
-
(2013)
Sensors Actuators B: Chem.
, vol.186
, pp. 451-460
-
-
Bagheri, H.1
Afkhami, A.2
Khoshsafar, H.3
Rezaei, M.4
Shirzadmehr, A.5
-
8
-
-
77049083353
-
A novel layer-by-layer self-assembled carbon nanotube-based anode: preparation, characterization, and application in microbial fuel cell
-
Sun J.J., Zhao H.Z., Yang Q.Z., Song J., Xue A. A novel layer-by-layer self-assembled carbon nanotube-based anode: preparation, characterization, and application in microbial fuel cell. Electrochim. Acta 2010, 55:3041-3047.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 3041-3047
-
-
Sun, J.J.1
Zhao, H.Z.2
Yang, Q.Z.3
Song, J.4
Xue, A.5
-
9
-
-
84861702089
-
Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells
-
Yuan Y., Zhou S., Zhao B., Zhuang L., Wang Y. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresour. Technol. 2012, 116:453-458.
-
(2012)
Bioresour. Technol.
, vol.116
, pp. 453-458
-
-
Yuan, Y.1
Zhou, S.2
Zhao, B.3
Zhuang, L.4
Wang, Y.5
-
10
-
-
68149151014
-
Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes
-
Tsai H.Y., Wu C.C., Lee C.Y., Shih E.P. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J. Power Sources 2009, 194:199-205.
-
(2009)
J. Power Sources
, vol.194
, pp. 199-205
-
-
Tsai, H.Y.1
Wu, C.C.2
Lee, C.Y.3
Shih, E.P.4
-
11
-
-
34249326597
-
Carbon nanotube/polyaniline composite as anode material for microbial fuel cells
-
Qiao Y., Li C.M., Bao S.-J., Bao Q.L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 2007, 170:79-84.
-
(2007)
J. Power Sources
, vol.170
, pp. 79-84
-
-
Qiao, Y.1
Li, C.M.2
Bao, S.-J.3
Bao, Q.L.4
-
12
-
-
55049113854
-
Development of carbon nanotubes and nanofluids based microbial fuel cell
-
Sharma T., Mohana Reddy A.L., Chandra T., Ramaprabhu S. Development of carbon nanotubes and nanofluids based microbial fuel cell. Int. J. Hydrogen Energy 2008, 33:6749-6754.
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, pp. 6749-6754
-
-
Sharma, T.1
Mohana Reddy, A.L.2
Chandra, T.3
Ramaprabhu, S.4
-
13
-
-
79953651903
-
Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell
-
Liu X.W., Sun X.-F., Huang Y.X., Sheng G.P., Wang S.G., Yu H.Q. Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell. Energy Environ. Sci. 2011, 4:1422-1427.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1422-1427
-
-
Liu, X.W.1
Sun, X.-F.2
Huang, Y.X.3
Sheng, G.P.4
Wang, S.G.5
Yu, H.Q.6
-
14
-
-
79955465102
-
A graphene modified anode to improve the performance of microbial fuel cells
-
Zhang Y., Mo G., Li X., Zhang W., Zhang J., Ye J., Huang X., Yu C. A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources 2011, 196:5402-5407.
-
(2011)
J. Power Sources
, vol.196
, pp. 5402-5407
-
-
Zhang, Y.1
Mo, G.2
Li, X.3
Zhang, W.4
Zhang, J.5
Ye, J.6
Huang, X.7
Yu, C.8
-
15
-
-
79955628225
-
Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems
-
Huang Y.X., Liu X.W., Xie J.F., Sheng G.-P., Wang G.Y., Zhang Y.Y., Xu A.W., Yu H.Q. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chem. Commun. 2011, 47:5795-5797.
-
(2011)
Chem. Commun.
, vol.47
, pp. 5795-5797
-
-
Huang, Y.X.1
Liu, X.W.2
Xie, J.F.3
Sheng, G.-P.4
Wang, G.Y.5
Zhang, Y.Y.6
Xu, A.W.7
Yu, H.Q.8
-
16
-
-
79952991664
-
An overview of graphene in energy production and storage applications
-
Brownson D.A., Kampouris D.K., Banks C.E. An overview of graphene in energy production and storage applications. J. Power Sources 2011, 196:4873-4885.
-
(2011)
J. Power Sources
, vol.196
, pp. 4873-4885
-
-
Brownson, D.A.1
Kampouris, D.K.2
Banks, C.E.3
-
17
-
-
36048978668
-
Sulfonated poly(styrene-co-maleic anhydride)-poly(ethylene glycol)-silica nanocomposite polyelectrolyte membranes for fuel cell applications
-
Saxena A., Tripathi B.P., Shahi V.K. Sulfonated poly(styrene-co-maleic anhydride)-poly(ethylene glycol)-silica nanocomposite polyelectrolyte membranes for fuel cell applications. J. Phys. Chem. B 2007, 111:12454-12461.
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 12454-12461
-
-
Saxena, A.1
Tripathi, B.P.2
Shahi, V.K.3
-
18
-
-
84865283298
-
Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether sulfone) membranes
-
Choi T.H., Won Y.B., Lee J.-W., Shin D.W., Lee Y.M., Kim M., Park H.B. Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether sulfone) membranes. J. Power Sources 2012, 269-279.
-
(2012)
J. Power Sources
, pp. 269-279
-
-
Choi, T.H.1
Won, Y.B.2
Lee, J.-W.3
Shin, D.W.4
Lee, Y.M.5
Kim, M.6
Park, H.B.7
-
19
-
-
1842425198
-
Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells
-
Smitha B., Sridhar S., Khan A. Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 2004, 37:2233-2239.
-
(2004)
Macromolecules
, vol.37
, pp. 2233-2239
-
-
Smitha, B.1
Sridhar, S.2
Khan, A.3
-
21
-
-
44049115952
-
Creation and structural comparison of ultrathin film assemblies: transferred freely suspended films and Langmuir-Blodgett films of liquid crystals
-
Decher G., Maclennan J., Sohling U., Reibel J. Creation and structural comparison of ultrathin film assemblies: transferred freely suspended films and Langmuir-Blodgett films of liquid crystals. Thin Solid Films 1992, 210:504-507.
-
(1992)
Thin Solid Films
, vol.210
, pp. 504-507
-
-
Decher, G.1
Maclennan, J.2
Sohling, U.3
Reibel, J.4
-
22
-
-
25144450808
-
Preparation and characterization of self-assembled polyelectrolyte multilayered films on electrospun nanofibers
-
Ding B., Fujimoto K., Shiratori S. Preparation and characterization of self-assembled polyelectrolyte multilayered films on electrospun nanofibers. Thin Solid Films 2005, 491:23-28.
-
(2005)
Thin Solid Films
, vol.491
, pp. 23-28
-
-
Ding, B.1
Fujimoto, K.2
Shiratori, S.3
-
23
-
-
0031554196
-
Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions
-
Stockton W., Rubner M. Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 1997, 30:2717-2725.
-
(1997)
Macromolecules
, vol.30
, pp. 2717-2725
-
-
Stockton, W.1
Rubner, M.2
-
24
-
-
0030848621
-
Fuzzy nanoassemblies: toward layered polymeric multicomposites
-
Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997, 277:1232-1237.
-
(1997)
Science
, vol.277
, pp. 1232-1237
-
-
Decher, G.1
-
25
-
-
38649105150
-
The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell
-
Zhang T., Cui C., Chen S., Yang H., Shen P. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Commun. 2008, 10:293-297.
-
(2008)
Electrochem. Commun.
, vol.10
, pp. 293-297
-
-
Zhang, T.1
Cui, C.2
Chen, S.3
Yang, H.4
Shen, P.5
-
26
-
-
33746624663
-
Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
-
Gorby Y.A., Yanina S., McLean J.S., Rosso K.M., Moyles D., Dohnalkova A., Beveridge T.J., Chang I.S., Kim B.H., Kim K.S. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 2006, 103:11358-11363.
-
(2006)
PNAS
, vol.103
, pp. 11358-11363
-
-
Gorby, Y.A.1
Yanina, S.2
McLean, J.S.3
Rosso, K.M.4
Moyles, D.5
Dohnalkova, A.6
Beveridge, T.J.7
Chang, I.S.8
Kim, B.H.9
Kim, K.S.10
-
27
-
-
34447523820
-
Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
-
Schröder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 2007, 9:2619-2629.
-
(2007)
Phys. Chem. Chem. Phys.
, vol.9
, pp. 2619-2629
-
-
Schröder, U.1
-
28
-
-
19444367096
-
Microbial fuel cells: novel biotechnology for energy generation
-
Rabaey K., Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23:291-298.
-
(2005)
Trends Biotechnol.
, vol.23
, pp. 291-298
-
-
Rabaey, K.1
Verstraete, W.2
|