메뉴 건너뛰기




Volumn 7, Issue 2, 2014, Pages 272-290

Ensemble ANNs-PSO-GA Approach for Day-ahead Stock E-exchange Prices Forecasting

Author keywords

artificial neural networks; ensemble forecasting; genetic operator; particle swarm optimization; stock e exchange prices

Indexed keywords

COMPLEX NETWORKS; COSTS; FORECASTING; PARTICLE SWARM OPTIMIZATION (PSO); SUPPORT VECTOR MACHINES;

EID: 84899997031     PISSN: 18756891     EISSN: 18756883     Source Type: Journal    
DOI: 10.1080/18756891.2013.864472     Document Type: Article
Times cited : (32)

References (44)
  • 1
    • 84864712166 scopus 로고    scopus 로고
    • A hybrid forecasting model for non-stationary time series: an application to container throughput prediction
    • Y. Xiao, J. Xiao, and S. Y. Wang, A hybrid forecasting model for non-stationary time series: an application to container throughput prediction, International Journal of Knowledge and Systems Science. 3(2) (2012) 67-82.
    • (2012) International Journal of Knowledge and Systems Science , vol.3 , Issue.2 , pp. 67-82
    • Xiao, Y.1    Xiao, J.2    Wang, S.Y.3
  • 2
    • 84864705386 scopus 로고    scopus 로고
    • A hybrid model for time series forecasting
    • Y. Xiao, J. Xiao, and S. Y. Wang, A hybrid model for time series forecasting, Human Systems Management. 31(2) (2012) 133-143.
    • (2012) Human Systems Management , vol.31 , Issue.2 , pp. 133-143
    • Xiao, Y.1    Xiao, J.2    Wang, S.Y.3
  • 5
    • 84900009456 scopus 로고    scopus 로고
    • A multiscale modeling approach incorporating ARIMA and ANNs for financial market volatility forecasting
    • Forthcoming
    • Y. Xiao, J. Xiao, and S. Y. Wang, A multiscale modeling approach incorporating ARIMA and ANNs for financial market volatility forecasting, in: Proc. Int. Conf. Forecasting Economic and Financial Systems, (Beijing, China, 2012), Forthcoming.
    • (2012) Proc. Int. Conf. Forecasting Economic and Financial Systems
    • Xiao, Y.1    Xiao, J.2    Wang, S.Y.3
  • 6
    • 0030130831 scopus 로고    scopus 로고
    • Using percentage accuracy to measure neural network predictions in Stock Market movements
    • D. Brownstone, Using percentage accuracy to measure neural network predictions in Stock Market movements, Neurocomputing. 10 (1996) 237-250.
    • (1996) Neurocomputing , vol.10 , pp. 237-250
    • Brownstone, D.1
  • 7
    • 0000125983 scopus 로고    scopus 로고
    • Improving returns on stock investment through neural network selection
    • T. S. Quah, and B. Srinivasan, Improving returns on stock investment through neural network selection, Expert Systems with Applications. 17 (1999) 295-301.
    • (1999) Expert Systems with Applications , vol.17 , pp. 295-301
    • Quah, T.S.1    Srinivasan, B.2
  • 8
    • 0035255160 scopus 로고    scopus 로고
    • An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network
    • R. J. Kuo, C. H. Chen, and Y. C. Hwang, An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network, Fuzzy Sets Systems. 118 (2001) 21-45.
    • (2001) Fuzzy Sets Systems , vol.118 , pp. 21-45
    • Kuo, R.J.1    Chen, C.H.2    Hwang, Y.C.3
  • 9
    • 0348001802 scopus 로고    scopus 로고
    • Research of neural network methods for compound stock exchange indices analysis
    • D. Plikynas, L. Simanauskas, and S. Buda, Research of neural network methods for compound stock exchange indices analysis, Informatica-Lithuan. 13 (2002) 465-484.
    • (2002) Informatica-Lithuan , vol.13 , pp. 465-484
    • Plikynas, D.1    Simanauskas, L.2    Buda, S.3
  • 10
    • 35048851605 scopus 로고    scopus 로고
    • Automating stock prediction with neural network and evolutionary computation
    • S. I. Ao, Automating stock prediction with neural network and evolutionary computation, Lecture Notes in Computer Science. 2690 (2003) 203-210.
    • (2003) Lecture Notes in Computer Science , vol.2690 , pp. 203-210
    • Ao, S.I.1
  • 11
    • 35048849630 scopus 로고    scopus 로고
    • Forecasting the volatility of stock index returns: A Stochastic neural network approach
    • C. Slim, Forecasting the volatility of stock index returns: A Stochastic neural network approach, Lecture Notes in Computer Science. 3045 (2004) 935-944.
    • (2004) Lecture Notes in Computer Science , vol.3045 , pp. 935-944
    • Slim, C.1
  • 12
    • 33746903994 scopus 로고    scopus 로고
    • A neural network approach to predicting stock exchange movements using external factors
    • N. O'Connor, and M. G. Madden, A neural network approach to predicting stock exchange movements using external factors, Knowledge-Based Systems. 19 (2006) 371-378.
    • (2006) Knowledge-Based Systems , vol.19 , pp. 371-378
    • O'Connor, N.1    Madden, M.G.2
  • 13
    • 37249055046 scopus 로고    scopus 로고
    • A comparison of neural network model selection strategies for the pricing of S&P 500 stock index options
    • N. S. Thomaidis, V. S. Tzastoudis, and G. D. Dounias, A comparison of neural network model selection strategies for the pricing of S&P 500 stock index options, Int. J. on Artificial Intelligence Tools. 16 (2007) 1093-1113.
    • (2007) Int. J. on Artificial Intelligence Tools , vol.16 , pp. 1093-1113
    • Thomaidis, N.S.1    Tzastoudis, V.S.2    Dounias, G.D.3
  • 14
    • 70349464843 scopus 로고    scopus 로고
    • Forecasting model of global stock index by stochastic time effective neural network
    • Z. Liao, and J. Wang, Forecasting model of global stock index by stochastic time effective neural network, Expert Systems with Applications. 37 (2010) 834-841.
    • (2010) Expert Systems with Applications , vol.37 , pp. 834-841
    • Liao, Z.1    Wang, J.2
  • 15
    • 79953724824 scopus 로고    scopus 로고
    • Using artificial neural network models in stock market index prediction
    • E. Guresen, G. Kayakutlu, and T. U. Daim, Using artificial neural network models in stock market index prediction, Expert Systems with Applications. 38 (2011) 10389-10397.
    • (2011) Expert Systems with Applications , vol.38 , pp. 10389-10397
    • Guresen, E.1    Kayakutlu, G.2    Daim, T.U.3
  • 16
    • 78650699256 scopus 로고    scopus 로고
    • A modern neural network model to do stock market timing on the basis of the ancient investment technique of Japanese Candlestick
    • M. Jasemi, A. M. Kimiagari, and A. Memariani, A modern neural network model to do stock market timing on the basis of the ancient investment technique of Japanese Candlestick, Expert Systems with Applications. 38 (2011) 3884-3890.
    • (2011) Expert Systems with Applications , vol.38 , pp. 3884-3890
    • Jasemi, M.1    Kimiagari, A.M.2    Memariani, A.3
  • 18
    • 78549243263 scopus 로고    scopus 로고
    • System identification and control using adaptive particle swarm optimization
    • A. Alfi, and H. Modares, System identification and control using adaptive particle swarm optimization, Applied Mathematical Modelling. 35 (2011), 1210-1221.
    • (2011) Applied Mathematical Modelling , vol.35 , pp. 1210-1221
    • Alfi, A.1    Modares, H.2
  • 19
    • 79958279908 scopus 로고    scopus 로고
    • A poly-hybrid PSO optimization method with intelligent parameter adjustment
    • P. C. Wang, and T. E. Shoup, A poly-hybrid PSO optimization method with intelligent parameter adjustment, Advances in Engineering Software. 42 (2011), 555-565.
    • (2011) Advances in Engineering Software , vol.42 , pp. 555-565
    • Wang, P.C.1    Shoup, T.E.2
  • 20
    • 35248829024 scopus 로고    scopus 로고
    • Integrating ensemble of intelligent systems for modeling stock indices
    • A. Abraham, and A. AuYeung, Integrating ensemble of intelligent systems for modeling stock indices, Lecture Notes in Computer Science. 2687 (2003),774-781
    • (2003) Lecture Notes in Computer Science , vol.2687 , pp. 774-781
    • Abraham, A.1    AuYeung, A.2
  • 21
    • 35048896416 scopus 로고    scopus 로고
    • Evolutionary ensemble for stock prediction
    • Y. K. Kwon, and B. R. Moon, Evolutionary ensemble for stock prediction, Lecture Notes in Computer Science. 3103 (2004),1102-1113
    • (2004) Lecture Notes in Computer Science , vol.3103 , pp. 1102-1113
    • Kwon, Y.K.1    Moon, B.R.2
  • 22
    • 13644257906 scopus 로고    scopus 로고
    • Dynamic adaptive ensemble case-based reasoning: application to stock market prediction
    • S. H. Chun, and Y. J. Park, Dynamic adaptive ensemble case-based reasoning: application to stock market prediction, Expert Systems with Applications. 28(3) (2005), 435-443
    • (2005) Expert Systems with Applications , vol.28 , Issue.3 , pp. 435-443
    • Chun, S.H.1    Park, Y.J.2
  • 23
    • 33845997779 scopus 로고    scopus 로고
    • Flexible neural trees ensemble for stock index modeling
    • Y. H. Chen, B. Yang, and A. Abraham, Flexible neural trees ensemble for stock index modeling, Neurocomputing. 70(4-6) (2007),697-703
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 697-703
    • Chen, Y.H.1    Yang, B.2    Abraham, A.3
  • 24
    • 78650693344 scopus 로고    scopus 로고
    • Forecast Combination by Using Artificial Neural Networks
    • C. H. Aladag, E. Egrioglu, and U. Yolcu, Forecast Combination by Using Artificial Neural Networks, Neural Processing Letters. 32(3) (2010), 269-276
    • (2010) Neural Processing Letters , vol.32 , Issue.3 , pp. 269-276
    • Aladag, C.H.1    Egrioglu, E.2    Yolcu, U.3
  • 25
    • 79955800605 scopus 로고    scopus 로고
    • Applying a combined fuzzy systems and GARCH model to adaptively forecast stock market volatility
    • J. C. Hung, Applying a combined fuzzy systems and GARCH model to adaptively forecast stock market volatility, Applied Soft Computing. 11(5) (2011), 3938-3945
    • (2011) Applied Soft Computing , vol.11 , Issue.5 , pp. 3938-3945
    • Hung, J.C.1
  • 26
    • 0034283989 scopus 로고    scopus 로고
    • A case study on using neural networks to perform technical forecasting of forex
    • J. T. Yao, and C. L. Tan, A case study on using neural networks to perform technical forecasting of forex, Neurocomputing. 34 (2000), 79-98.
    • (2000) Neurocomputing , vol.34 , pp. 79-98
    • Yao, J.T.1    Tan, C.L.2
  • 27
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning. 26 (1996), 123-140.
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 28
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with noise: an effective regularization technique
    • Y. Raviv, and N. Intrator, Bootstrapping with noise: an effective regularization technique, Connection Science. 8 (1996), 355-372.
    • (1996) Connection Science , vol.8 , pp. 355-372
    • Raviv, Y.1    Intrator, N.2
  • 29
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • W. S. McCulloch, and W. Pitts, A logical calculus of the ideas imminent in nervous activity, Bulletin and Mathematical Biophysics. 5 (1943), 115-133.
    • (1943) Bulletin and Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 30
    • 26444565569 scopus 로고
    • Finding Structure in Time
    • J. L. Elman, Finding Structure in Time, Cognitive Science. 14 (1990), 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 31
    • 0001931220 scopus 로고
    • Dynamic system identification using partially recurrent neural networks
    • D. T. Pham, and X. Liu, Dynamic system identification using partially recurrent neural networks, Journal of Systems Engineering. 2(2) (1992), 90-97.
    • (1992) Journal of Systems Engineering , vol.2 , Issue.2 , pp. 90-97
    • Pham, D.T.1    Liu, X.2
  • 33
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen, On estimation of a probability density function and mode, Annals of Mathematical Statistics. 33 (1962), 1065-1076.
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 35
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchocombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks. 2 (1989), 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchocombe, M.2    White, H.3
  • 36
    • 0034745995 scopus 로고    scopus 로고
    • Prediction of programmed-temperature retention values of naphthas by wavelet neural network
    • X. Zhang, J. Qi, R. Zhang, et al. Prediction of programmed-temperature retention values of naphthas by wavelet neural network, Journal of Computational Chemistry. 25 (2001), 125.
    • (2001) Journal of Computational Chemistry , vol.25 , pp. 125
    • Zhang, X.1    Qi, J.2    Zhang, R.3
  • 37
    • 12444314024 scopus 로고    scopus 로고
    • A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization
    • C. W. Jiang, and B. Etorre, A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization, Mathematics and Computers in Simulation. 68(1) (2005), 57-65.
    • (2005) Mathematics and Computers in Simulation , vol.68 , Issue.1 , pp. 57-65
    • Jiang, C.W.1    Etorre, B.2
  • 38
    • 33947119065 scopus 로고    scopus 로고
    • Hybrid simplex search and particle swarm optimization for unconstratined optimization problems
    • S. F. Fan, and E. Zahara, Hybrid simplex search and particle swarm optimization for unconstratined optimization problems, European Journal of Operational Research. 181(2) (2007), 527-548.
    • (2007) European Journal of Operational Research , vol.181 , Issue.2 , pp. 527-548
    • Fan, S.F.1    Zahara, E.2
  • 39
    • 34247257749 scopus 로고    scopus 로고
    • Continuous functions minimization by dynamic random search technique
    • C. Hamzacebi, and F. Kutay, Continuous functions minimization by dynamic random search technique, Applied Mathematical Modelling. 31(10) (2007), 189-198.
    • (2007) Applied Mathematical Modelling , vol.31 , Issue.10 , pp. 189-198
    • Hamzacebi, C.1    Kutay, F.2
  • 40
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • A. Ratnawecra, and S. Halgamuge, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, Evolutionary Computation. 8(3) (2004), 240-255.
    • (2004) Evolutionary Computation , vol.8 , Issue.3 , pp. 240-255
    • Ratnawecra, A.1    Halgamuge, S.2
  • 42
    • 84872396143 scopus 로고    scopus 로고
    • Faster particle swarm optimization with random inertia weight
    • X. Huang, J. Zhang, and Z. H. Zhan, Faster particle swarm optimization with random inertia weight, Computer Engineering and Design. 30(3) (2009), 647-650.
    • (2009) Computer Engineering and Design , vol.30 , Issue.3 , pp. 647-650
    • Huang, X.1    Zhang, J.2    Zhan, Z.H.3
  • 43
    • 33645153122 scopus 로고    scopus 로고
    • Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm
    • G. M. Chen, J. Y. Jia, and Q. Han, Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm, Journal of Xi'an Jiaotong University. 40(1) (2006), 53-56.
    • (2006) Journal of Xi'an Jiaotong University , vol.40 , Issue.1 , pp. 53-56
    • Chen, G.M.1    Jia, J.Y.2    Han, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.