-
1
-
-
56149111743
-
Supervised Neuronal Approaches for EEG Signal Classification: Experimental Studies
-
Frederic, Alexandre, KerkeniNizar, Ben Khalifa Khaled, Bedoui Mohamed Hedi, Bougrain Laurent, and Dogui Mohamed, "Supervised Neuronal Approaches for EEG Signal Classification: Experimental Studies, " Artificial Intelligence and Soft Computing. ACTA Press, vol. 29, 2006, pp. 1-6.
-
(2006)
Artificial Intelligence and Soft Computing. ACTA Press
, vol.29
, pp. 1-6
-
-
Frederic, A.1
Nizar, K.2
Khaled, B.K.3
Hedi, B.M.4
Laurent, B.5
Mohamed, D.6
-
2
-
-
84863430342
-
Signal Denoising Using Empirical Mode Decomposition and Higher Order Statistics
-
June
-
George Tsolis and Thomas D. Xenos, "Signal Denoising Using Empirical Mode Decomposition and Higher Order Statistics, " International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 4, no. 2, June 2011, pp. 91-106.
-
(2011)
International Journal of Signal Processing, Image Processing and Pattern Recognition
, vol.4
, Issue.2
, pp. 91-106
-
-
Tsolis, G.1
Xenos, T.D.2
-
3
-
-
24144470790
-
Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signals Classification
-
NihalFatma Guler, ElifDerya Ubeyli and Inan Guler, "Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signals Classification, " Expert Systems with Applications, vol. 29, no. 3, 2005, pp. 506-514.
-
(2005)
Expert Systems with Applications
, vol.29
, Issue.3
, pp. 506-514
-
-
Guler, N.1
Ubeyli, E.2
Guler, I.3
-
4
-
-
0036232561
-
Electroencephalogram Processing Using Neural Networks
-
Claude Robert, Jean-Francois Gaudy, AimeLimoge, "Electroencephalogram Processing Using Neural Networks, " Clinical Neurophysiology, vol. 113, no. 5, 2002, pp. 694-701.
-
(2002)
Clinical Neurophysiology
, vol.113
, Issue.5
, pp. 694-701
-
-
Robert, C.1
Gaudy, J.-F.2
AimeLimoge3
-
5
-
-
18744404816
-
Independent Component Analysis for Biomedical Signals
-
James, Christopher J., and Christian W. Hesse. "Independent Component Analysis for Biomedical Signals, " Physiological measurement, vol. 26, no. 1, 2004, pp. 633-644.
-
(2004)
Physiological measurement
, vol.26
, Issue.1
, pp. 633-644
-
-
James, C.J.1
Hesse, C.W.2
-
7
-
-
84897449811
-
Performance Comparison of STFT, WT, LMS and RLS Adaptive Algorithms in Denoising of Speech Signal
-
June
-
MahbubulAlam, Md. Imdadul Islam, and M. R. Amin, "Performance Comparison of STFT, WT, LMS and RLS Adaptive Algorithms in Denoising of Speech Signal, " IACSIT International Journal of Engineering and Technology, vol.3, no.3, June 2011, pp. 235-238.
-
(2011)
IACSIT International Journal of Engineering and Technology
, vol.3
, Issue.3
, pp. 235-238
-
-
Alam, M.1
Islam, M.I.2
Amin, M.R.3
-
11
-
-
56549122554
-
Analysis of EEG Signals by Implementing Eigenvector Methods/Recurrent Neural Networks
-
ElifDerya Ubeyli, "Analysis of EEG Signals by Implementing Eigenvector Methods/Recurrent Neural Networks, " Digital Signal Processing, vol. 19, no. 1, 2009, pp.134-143.
-
(2009)
Digital Signal Processing
, vol.19
, Issue.1
, pp. 134-143
-
-
Ubeyli, E.1
-
12
-
-
0036550546
-
Blind Noise Reduction for Multisensory Signals using ICA and Subspace Filtering, with Application to EEG Analysis
-
Sergiy Vorobyov and Andrzej Cichocki, "Blind Noise Reduction for Multisensory Signals using ICA and Subspace Filtering, with Application to EEG Analysis, " Biol. Cybern., vol. 86, no. 4, 2002, pp. 293-303.
-
(2002)
Biol. Cybern.
, vol.86
, Issue.4
, pp. 293-303
-
-
Vorobyov, S.1
Cichocki, A.2
-
13
-
-
84899914075
-
EEG Signal Preprocessing using Wavelet Transform
-
Arun S. Chavan and Mahesh Kolte, "EEG Signal Preprocessing using Wavelet Transform, " International Journal of Electronics Engineering, vol. 3, no. 1, 2011, pp. 5-10.
-
(2011)
International Journal of Electronics Engineering
, vol.3
, Issue.1
, pp. 5-10
-
-
Chavan, A.S.1
Kolte, M.2
-
15
-
-
37849038260
-
Classification of EEG Recordings by Using Fast Independent Component Analysis and Artificial Neural Network
-
Yucel Kocyigit, AhmetAlkan and HalilErol, "Classification of EEG Recordings by Using Fast Independent Component Analysis and Artificial Neural Network, " J Med Syst, vol. 32, no. 1, 2008, pp. 17-20.
-
(2008)
J Med Syst
, vol.32
, Issue.1
, pp. 17-20
-
-
Kocyigit, Y.1
Alkan, A.2
HalilErol3
-
16
-
-
79957981604
-
EEG Signals Classification Using the K-means Clustering and a Multilayer Perceptron Neural Network Model
-
UmutOrhan, MahmutHekim and MahmutOzer, "EEG Signals Classification Using the K-means Clustering and a Multilayer Perceptron Neural Network Model, " Expert Systems with Applications, vol. 38, no. 10, 2011, pp. 13475-13481.
-
(2011)
Expert Systems with Applications
, vol.38
, Issue.10
, pp. 13475-13481
-
-
Orhan, U.1
Hekim, M.2
Ozer, M.3
-
17
-
-
70349472753
-
Least Squares Support Vector Machine Employing Model-based Methods Coefficients for Analysis of EEG signals
-
ElifDeryaibeyli, "Least Squares Support Vector Machine Employing Model-based Methods Coefficients for Analysis of EEG signals, " Expert Systems with Applications, vol. 37, no. 1, 2010, pp. 233-239.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.1
, pp. 233-239
-
-
Deryaibeyli, E.1
-
18
-
-
71749109171
-
Lyapunov Exponents/Probabilistic Neural Networks for Analysis of EEG Signals
-
ElifDeryaUbeyli, "Lyapunov Exponents/Probabilistic Neural Networks for Analysis of EEG Signals, " Expert Systems with Applications, vol. 37, no. 3, 2010, pp. 985-992.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.3
, pp. 985-992
-
-
ElifDeryaUbeyli1
-
19
-
-
41249099701
-
Optimal Classification of Epileptic Seizures in EEG Using Wavelet Analysis and Genetic Algorithm
-
HasanOcak, "Optimal Classification of Epileptic Seizures in EEG Using Wavelet Analysis and Genetic Algorithm, " Signal Processing, vol. 88, no. 7, 2008, pp. 1858-1867.
-
(2008)
Signal Processing
, vol.88
, Issue.7
, pp. 1858-1867
-
-
Ocak, H.1
-
20
-
-
67650751415
-
Classification of EEG Signals Using Relative Wavelet Energy and Artificial Neural Networks
-
Ling Guo, Daniel Rivero, Jose A. Seoane and Alejandro Pazos, "Classification of EEG Signals Using Relative Wavelet Energy and Artificial Neural Networks, " In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, 2009, pp. 177-184.
-
(2009)
Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation
, pp. 177-184
-
-
Guo, L.1
Rivero, D.2
Seoane, J.A.3
Pazos, A.4
-
21
-
-
84874659586
-
Review of Significant Research on EEG based Automated Detection of Epilepsy Seizures & Brain Tumor
-
August
-
Sharanreddy. M and P.K. Kulkarni, "Review of Significant Research on EEG based Automated Detection of Epilepsy Seizures & Brain Tumor, " International Journal of Scientific & Engineering Research, vol. 2, no. 8, August 2011, pp. 1-9.
-
(2011)
International Journal of Scientific & Engineering Research
, vol.2
, Issue.8
, pp. 1-9
-
-
Sharanreddy, M.1
Kulkarni, P.K.2
-
22
-
-
37349024109
-
Wavelet/Mixture of Experts Network Structure for EEG Signals Classification
-
ElifDerya Ubeyli, "Wavelet/Mixture of Experts Network Structure for EEG Signals Classification, " Expert Systems with Applications, vol. 34, no. 3, 2008, pp. 1954-1962.
-
(2008)
Expert Systems with Applications
, vol.34
, Issue.3
, pp. 1954-1962
-
-
Ubeyli, E.1
-
23
-
-
84899961671
-
-
available at
-
EEG time series available at http://www.meb.unibonn. de/epileptologie/science/physik/eegdata.html.
-
EEG time series
-
-
-
24
-
-
0842310823
-
A Neural-Networkbased Detection of Epilepsy
-
V. P. Nigam and D. Graupe, "A Neural-Networkbased Detection of Epilepsy, " Neurol. Res., vol. 26, no. 6, 2004, pp. 55-60.
-
(2004)
Neurol. Res.
, vol.26
, Issue.6
, pp. 55-60
-
-
Nigam, V.P.1
Graupe, D.2
-
25
-
-
24044474732
-
Artificial Neural Network based Epileptic Detection using Time-Domain and Frequency Domain Features
-
V. Srinivasan, C. Eswaran, and N. Sriraam, "Artificial Neural Network based Epileptic Detection using Time-Domain and Frequency Domain Features, " J. Med. Syst., vol. 29, no. 6, 2005, pp. 647-660.
-
(2005)
J. Med. Syst.
, vol.29
, Issue.6
, pp. 647-660
-
-
Srinivasan, V.1
Eswaran, C.2
Sriraam, N.3
-
26
-
-
27744537035
-
Entropies for Detection of Epilepsy in EEG
-
N. Kannathal, M. L. Choo, U. R. Acharya, and P. K. Sadasivan, "Entropies for Detection of Epilepsy in EEG, " Comput. Methods Prog. Biomed., vol. 80, no. 3, 2005, pp. 187-194.
-
(2005)
Comput. Methods Prog. Biomed.
, vol.80
, Issue.3
, pp. 187-194
-
-
Kannathal, N.1
Choo, M.L.2
Acharya, U.R.3
Sadasivan, P.K.4
-
27
-
-
25144477526
-
Characterization of EEG-A Comparative Study
-
N. Kannathal, U. R. Acharya, C. M. Lim, and P. K. Sadasivan, "Characterization of EEG-A Comparative Study, " Comput. Methods Prog. Biomed., vol. 80, no. 1, 2005, pp. 17-23.
-
(2005)
Comput. Methods Prog. Biomed.
, vol.80
, Issue.1
, pp. 17-23
-
-
Kannathal, N.1
Acharya, U.R.2
Lim, C.M.3
Sadasivan, P.K.4
-
28
-
-
33750457954
-
Classification of Epileptiform EEG using a Hybrid System based on Decision Tree classifier and Fast Fourier Transform
-
K. Polat and S. Gunes, "Classification of Epileptiform EEG using a Hybrid System based on Decision Tree classifier and Fast Fourier Transform, " Appl. Math. Comput., vol. 32, no. 2, 2007, pp. 625-631.
-
(2007)
Appl. Math. Comput.
, vol.32
, Issue.2
, pp. 625-631
-
-
Polat, K.1
Gunes, S.2
-
29
-
-
33751396389
-
Signal Classification using Wavelet Feature Extraction and Mixture of Expert Model
-
A. Subasi, "Signal Classification using Wavelet Feature Extraction and Mixture of Expert Model, " Exp. Syst. Appl., vol. 32, no. 4, 2007, pp. 1084-1093.
-
(2007)
Exp. Syst. Appl.
, vol.32
, Issue.4
, pp. 1084-1093
-
-
Subasi, A.1
-
30
-
-
24144470790
-
Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signals Classification
-
N. F. Guler, E. D. Ubeyli, and I. Guler, "Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signals Classification, " Exp. Syst. Appl., vol.29, no. 3, 2005, pp. 506-514.
-
(2005)
Exp. Syst. Appl.
, vol.29
, Issue.3
, pp. 506-514
-
-
Guler, N.F.1
Ubeyli, E.D.2
Guler, I.3
-
31
-
-
34250729003
-
Epileptic Seizure Detection Using Neural Fuzzy Networks
-
Jul. 16-21
-
N. Sadati, H. R. Mohseni, and A. Magshoudi, "Epileptic Seizure Detection Using Neural Fuzzy Networks, " in Proc. IEEE Int. Conf. Fuzzy Syst., Jul. 16-21, 2006, pp. 596-600.
-
(2006)
Proc. IEEE Int. Conf. Fuzzy Syst.
, pp. 596-600
-
-
Sadati, N.1
Mohseni, H.R.2
Magshoudi, A.3
-
32
-
-
26944458497
-
Adaptive Neuro-Fuzzy Inference System for Classification of EEG Signals using wavelet coefficients
-
I. Guler and E. D. Ubeyli, "Adaptive Neuro-Fuzzy Inference System for Classification of EEG Signals using wavelet coefficients, " J. Neurosci. Methods, vol. 148, no. 2, 2005, pp. 113-121.
-
(2005)
J. Neurosci. Methods
, vol.148
, Issue.2
, pp. 113-121
-
-
Guler, I.1
Ubeyli, E.D.2
-
33
-
-
33846095446
-
Features Extracted by Eigenvector Methods for Detecting Variability of EEG Signals
-
E. D. Ubeyli and I. Guler, "Features Extracted by Eigenvector Methods for Detecting Variability of EEG Signals, " Pattern Recognit. Lett., vol. 28, no. 5, 2007, pp. 592-603.
-
(2007)
Pattern Recognit. Lett.
, vol.28
, Issue.5
, pp. 592-603
-
-
Ubeyli, E.D.1
Guler, I.2
-
34
-
-
70349410385
-
Epileptic Seizure Detection in EEGs using Time-Frequency Analysis
-
September
-
T. Tzallas, "Epileptic Seizure Detection in EEGs using Time-Frequency Analysis, " in IEEE transactions on Information Technology, vol. 13 no. 5, September 2009, pp. 703-710.
-
(2009)
IEEE transactions on Information Technology
, vol.13
, Issue.5
, pp. 703-710
-
-
Tzallas, T.1
-
35
-
-
79959990525
-
An Adaptive Neuro-Fuzzy Inference System Model for Predicting the Performance of a Refrigeration System with a Cooling Tower
-
M. Hosoz, et al., "An Adaptive Neuro-Fuzzy Inference System Model for Predicting the Performance of a Refrigeration System with a Cooling Tower, " Expert Systems with Applications, vol. 38, no. 11, 2011, pp. 14148-14155.
-
(2011)
Expert Systems with Applications
, vol.38
, Issue.11
, pp. 14148-14155
-
-
Hosoz, M.1
-
36
-
-
84891894938
-
Performance Analysis of Epileptic Seizure Detection Using DWT & ICA with Neural Networks
-
M. S. Mercy, "Performance Analysis of Epileptic Seizure Detection Using DWT & ICA with Neural Networks, " International Journal Of Computational Engineering Research, vol. 2, no. 4, 2012, pp. 1109-1113.
-
(2012)
International Journal Of Computational Engineering Research
, vol.2
, Issue.4
, pp. 1109-1113
-
-
Mercy, M.S.1
-
37
-
-
84908618803
-
Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition
-
S. Hosseini, et al., "Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition, " International Journal of Intelligent Systems and Applications (IJISA), vol. 5, no. 6, 2013, pp. 41-46.
-
(2013)
International Journal of Intelligent Systems and Applications (IJISA)
, vol.5
, Issue.6
, pp. 41-46
-
-
Hosseini, S.1
|