메뉴 건너뛰기




Volumn 9, Issue 3, 2014, Pages 1060-1071

An improved EEG signal classification using Neural Network with the consequence of ICA and STFT

Author keywords

Adaptive neuro fuzzy inference system (ANFIS); And thresholding; Backpropagation neural network (BPNN); EEG signal; Epileptic seizure; Independent component analysis (ICA); Levenberg marquardt algorithm; Neural network classification; Short time fourier transform (STFT)

Indexed keywords

BRAIN; ELECTROENCEPHALOGRAPHY; FEATURE EXTRACTION; INDEPENDENT COMPONENT ANALYSIS; LYAPUNOV METHODS; NEURAL NETWORKS; NEURODEGENERATIVE DISEASES; NEURONS;

EID: 84899983259     PISSN: 19750102     EISSN: None     Source Type: Journal    
DOI: 10.5370/JEET.2014.9.3.1060     Document Type: Article
Times cited : (35)

References (37)
  • 3
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signals Classification
    • NihalFatma Guler, ElifDerya Ubeyli and Inan Guler, "Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signals Classification, " Expert Systems with Applications, vol. 29, no. 3, 2005, pp. 506-514.
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Guler, N.1    Ubeyli, E.2    Guler, I.3
  • 4
    • 0036232561 scopus 로고    scopus 로고
    • Electroencephalogram Processing Using Neural Networks
    • Claude Robert, Jean-Francois Gaudy, AimeLimoge, "Electroencephalogram Processing Using Neural Networks, " Clinical Neurophysiology, vol. 113, no. 5, 2002, pp. 694-701.
    • (2002) Clinical Neurophysiology , vol.113 , Issue.5 , pp. 694-701
    • Robert, C.1    Gaudy, J.-F.2    AimeLimoge3
  • 5
    • 18744404816 scopus 로고    scopus 로고
    • Independent Component Analysis for Biomedical Signals
    • James, Christopher J., and Christian W. Hesse. "Independent Component Analysis for Biomedical Signals, " Physiological measurement, vol. 26, no. 1, 2004, pp. 633-644.
    • (2004) Physiological measurement , vol.26 , Issue.1 , pp. 633-644
    • James, C.J.1    Hesse, C.W.2
  • 7
    • 84897449811 scopus 로고    scopus 로고
    • Performance Comparison of STFT, WT, LMS and RLS Adaptive Algorithms in Denoising of Speech Signal
    • June
    • MahbubulAlam, Md. Imdadul Islam, and M. R. Amin, "Performance Comparison of STFT, WT, LMS and RLS Adaptive Algorithms in Denoising of Speech Signal, " IACSIT International Journal of Engineering and Technology, vol.3, no.3, June 2011, pp. 235-238.
    • (2011) IACSIT International Journal of Engineering and Technology , vol.3 , Issue.3 , pp. 235-238
    • Alam, M.1    Islam, M.I.2    Amin, M.R.3
  • 8
    • 34047120243 scopus 로고    scopus 로고
    • Seizure Detection in EEG signals: A Comparison of Different Approaches
    • Hamid R. Mohseni, A. Maghsoudi and Mohammad B. Shamsollahi, "Seizure Detection in EEG signals: A Comparison of Different Approaches, " In ConfProc IEEE Eng Med BiolSoc, 2006, pp. 6724-6727.
    • (2006) ConfProc IEEE Eng Med BiolSoc , pp. 6724-6727
    • Mohseni, H.R.1    Maghsoudi, A.2    Shamsollahi, M.B.3
  • 11
    • 56549122554 scopus 로고    scopus 로고
    • Analysis of EEG Signals by Implementing Eigenvector Methods/Recurrent Neural Networks
    • ElifDerya Ubeyli, "Analysis of EEG Signals by Implementing Eigenvector Methods/Recurrent Neural Networks, " Digital Signal Processing, vol. 19, no. 1, 2009, pp.134-143.
    • (2009) Digital Signal Processing , vol.19 , Issue.1 , pp. 134-143
    • Ubeyli, E.1
  • 12
    • 0036550546 scopus 로고    scopus 로고
    • Blind Noise Reduction for Multisensory Signals using ICA and Subspace Filtering, with Application to EEG Analysis
    • Sergiy Vorobyov and Andrzej Cichocki, "Blind Noise Reduction for Multisensory Signals using ICA and Subspace Filtering, with Application to EEG Analysis, " Biol. Cybern., vol. 86, no. 4, 2002, pp. 293-303.
    • (2002) Biol. Cybern. , vol.86 , Issue.4 , pp. 293-303
    • Vorobyov, S.1    Cichocki, A.2
  • 15
    • 37849038260 scopus 로고    scopus 로고
    • Classification of EEG Recordings by Using Fast Independent Component Analysis and Artificial Neural Network
    • Yucel Kocyigit, AhmetAlkan and HalilErol, "Classification of EEG Recordings by Using Fast Independent Component Analysis and Artificial Neural Network, " J Med Syst, vol. 32, no. 1, 2008, pp. 17-20.
    • (2008) J Med Syst , vol.32 , Issue.1 , pp. 17-20
    • Kocyigit, Y.1    Alkan, A.2    HalilErol3
  • 16
    • 79957981604 scopus 로고    scopus 로고
    • EEG Signals Classification Using the K-means Clustering and a Multilayer Perceptron Neural Network Model
    • UmutOrhan, MahmutHekim and MahmutOzer, "EEG Signals Classification Using the K-means Clustering and a Multilayer Perceptron Neural Network Model, " Expert Systems with Applications, vol. 38, no. 10, 2011, pp. 13475-13481.
    • (2011) Expert Systems with Applications , vol.38 , Issue.10 , pp. 13475-13481
    • Orhan, U.1    Hekim, M.2    Ozer, M.3
  • 17
    • 70349472753 scopus 로고    scopus 로고
    • Least Squares Support Vector Machine Employing Model-based Methods Coefficients for Analysis of EEG signals
    • ElifDeryaibeyli, "Least Squares Support Vector Machine Employing Model-based Methods Coefficients for Analysis of EEG signals, " Expert Systems with Applications, vol. 37, no. 1, 2010, pp. 233-239.
    • (2010) Expert Systems with Applications , vol.37 , Issue.1 , pp. 233-239
    • Deryaibeyli, E.1
  • 18
    • 71749109171 scopus 로고    scopus 로고
    • Lyapunov Exponents/Probabilistic Neural Networks for Analysis of EEG Signals
    • ElifDeryaUbeyli, "Lyapunov Exponents/Probabilistic Neural Networks for Analysis of EEG Signals, " Expert Systems with Applications, vol. 37, no. 3, 2010, pp. 985-992.
    • (2010) Expert Systems with Applications , vol.37 , Issue.3 , pp. 985-992
    • ElifDeryaUbeyli1
  • 19
    • 41249099701 scopus 로고    scopus 로고
    • Optimal Classification of Epileptic Seizures in EEG Using Wavelet Analysis and Genetic Algorithm
    • HasanOcak, "Optimal Classification of Epileptic Seizures in EEG Using Wavelet Analysis and Genetic Algorithm, " Signal Processing, vol. 88, no. 7, 2008, pp. 1858-1867.
    • (2008) Signal Processing , vol.88 , Issue.7 , pp. 1858-1867
    • Ocak, H.1
  • 21
    • 84874659586 scopus 로고    scopus 로고
    • Review of Significant Research on EEG based Automated Detection of Epilepsy Seizures & Brain Tumor
    • August
    • Sharanreddy. M and P.K. Kulkarni, "Review of Significant Research on EEG based Automated Detection of Epilepsy Seizures & Brain Tumor, " International Journal of Scientific & Engineering Research, vol. 2, no. 8, August 2011, pp. 1-9.
    • (2011) International Journal of Scientific & Engineering Research , vol.2 , Issue.8 , pp. 1-9
    • Sharanreddy, M.1    Kulkarni, P.K.2
  • 22
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/Mixture of Experts Network Structure for EEG Signals Classification
    • ElifDerya Ubeyli, "Wavelet/Mixture of Experts Network Structure for EEG Signals Classification, " Expert Systems with Applications, vol. 34, no. 3, 2008, pp. 1954-1962.
    • (2008) Expert Systems with Applications , vol.34 , Issue.3 , pp. 1954-1962
    • Ubeyli, E.1
  • 23
    • 84899961671 scopus 로고    scopus 로고
    • available at
    • EEG time series available at http://www.meb.unibonn. de/epileptologie/science/physik/eegdata.html.
    • EEG time series
  • 24
    • 0842310823 scopus 로고    scopus 로고
    • A Neural-Networkbased Detection of Epilepsy
    • V. P. Nigam and D. Graupe, "A Neural-Networkbased Detection of Epilepsy, " Neurol. Res., vol. 26, no. 6, 2004, pp. 55-60.
    • (2004) Neurol. Res. , vol.26 , Issue.6 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 25
    • 24044474732 scopus 로고    scopus 로고
    • Artificial Neural Network based Epileptic Detection using Time-Domain and Frequency Domain Features
    • V. Srinivasan, C. Eswaran, and N. Sriraam, "Artificial Neural Network based Epileptic Detection using Time-Domain and Frequency Domain Features, " J. Med. Syst., vol. 29, no. 6, 2005, pp. 647-660.
    • (2005) J. Med. Syst. , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 28
    • 33750457954 scopus 로고    scopus 로고
    • Classification of Epileptiform EEG using a Hybrid System based on Decision Tree classifier and Fast Fourier Transform
    • K. Polat and S. Gunes, "Classification of Epileptiform EEG using a Hybrid System based on Decision Tree classifier and Fast Fourier Transform, " Appl. Math. Comput., vol. 32, no. 2, 2007, pp. 625-631.
    • (2007) Appl. Math. Comput. , vol.32 , Issue.2 , pp. 625-631
    • Polat, K.1    Gunes, S.2
  • 29
    • 33751396389 scopus 로고    scopus 로고
    • Signal Classification using Wavelet Feature Extraction and Mixture of Expert Model
    • A. Subasi, "Signal Classification using Wavelet Feature Extraction and Mixture of Expert Model, " Exp. Syst. Appl., vol. 32, no. 4, 2007, pp. 1084-1093.
    • (2007) Exp. Syst. Appl. , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 30
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signals Classification
    • N. F. Guler, E. D. Ubeyli, and I. Guler, "Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signals Classification, " Exp. Syst. Appl., vol.29, no. 3, 2005, pp. 506-514.
    • (2005) Exp. Syst. Appl. , vol.29 , Issue.3 , pp. 506-514
    • Guler, N.F.1    Ubeyli, E.D.2    Guler, I.3
  • 32
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive Neuro-Fuzzy Inference System for Classification of EEG Signals using wavelet coefficients
    • I. Guler and E. D. Ubeyli, "Adaptive Neuro-Fuzzy Inference System for Classification of EEG Signals using wavelet coefficients, " J. Neurosci. Methods, vol. 148, no. 2, 2005, pp. 113-121.
    • (2005) J. Neurosci. Methods , vol.148 , Issue.2 , pp. 113-121
    • Guler, I.1    Ubeyli, E.D.2
  • 33
    • 33846095446 scopus 로고    scopus 로고
    • Features Extracted by Eigenvector Methods for Detecting Variability of EEG Signals
    • E. D. Ubeyli and I. Guler, "Features Extracted by Eigenvector Methods for Detecting Variability of EEG Signals, " Pattern Recognit. Lett., vol. 28, no. 5, 2007, pp. 592-603.
    • (2007) Pattern Recognit. Lett. , vol.28 , Issue.5 , pp. 592-603
    • Ubeyli, E.D.1    Guler, I.2
  • 34
    • 70349410385 scopus 로고    scopus 로고
    • Epileptic Seizure Detection in EEGs using Time-Frequency Analysis
    • September
    • T. Tzallas, "Epileptic Seizure Detection in EEGs using Time-Frequency Analysis, " in IEEE transactions on Information Technology, vol. 13 no. 5, September 2009, pp. 703-710.
    • (2009) IEEE transactions on Information Technology , vol.13 , Issue.5 , pp. 703-710
    • Tzallas, T.1
  • 35
    • 79959990525 scopus 로고    scopus 로고
    • An Adaptive Neuro-Fuzzy Inference System Model for Predicting the Performance of a Refrigeration System with a Cooling Tower
    • M. Hosoz, et al., "An Adaptive Neuro-Fuzzy Inference System Model for Predicting the Performance of a Refrigeration System with a Cooling Tower, " Expert Systems with Applications, vol. 38, no. 11, 2011, pp. 14148-14155.
    • (2011) Expert Systems with Applications , vol.38 , Issue.11 , pp. 14148-14155
    • Hosoz, M.1
  • 36
    • 84891894938 scopus 로고    scopus 로고
    • Performance Analysis of Epileptic Seizure Detection Using DWT & ICA with Neural Networks
    • M. S. Mercy, "Performance Analysis of Epileptic Seizure Detection Using DWT & ICA with Neural Networks, " International Journal Of Computational Engineering Research, vol. 2, no. 4, 2012, pp. 1109-1113.
    • (2012) International Journal Of Computational Engineering Research , vol.2 , Issue.4 , pp. 1109-1113
    • Mercy, M.S.1
  • 37
    • 84908618803 scopus 로고    scopus 로고
    • Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition
    • S. Hosseini, et al., "Qualitative and Quantitative Evaluation of EEG Signals in Epileptic Seizure Recognition, " International Journal of Intelligent Systems and Applications (IJISA), vol. 5, no. 6, 2013, pp. 41-46.
    • (2013) International Journal of Intelligent Systems and Applications (IJISA) , vol.5 , Issue.6 , pp. 41-46
    • Hosseini, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.