메뉴 건너뛰기




Volumn 138, Issue , 2014, Pages 347-357

Integrating complementary techniques for promoting diversity in classifier ensembles: A systematic study

Author keywords

Bagging; Classifier ensembles; Diversity; Feature selection; Heterogeneous models

Indexed keywords

COMPUTER APPLICATIONS; FEATURE EXTRACTION; NEURAL NETWORKS;

EID: 84899957756     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.01.027     Document Type: Article
Times cited : (53)

References (32)
  • 2
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6(3):21-45.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 3
    • 77952046540 scopus 로고    scopus 로고
    • "Good" and "bad" diversity in majority vote ensembles, in: N. Gayar, J. Kittler, F. Roli (Eds.), Multiple Classifier Systems-MCS 2010, Lecture Notes in Computer Science, Springer, Berlin
    • G. Brown, L.I. Kuncheva, "Good" and "bad" diversity in majority vote ensembles, in: N. Gayar, J. Kittler, F. Roli (Eds.), Multiple Classifier Systems-MCS 2010, Lecture Notes in Computer Science, vol. 5997, Springer, Berlin, 2010, pp. 124-133.
    • (2010) , vol.5997 , pp. 124-133
    • Brown, G.1    Kuncheva, L.I.2
  • 4
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles. Mach. Learn. 2003, 51:181-207.
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 6
    • 84899928683 scopus 로고    scopus 로고
    • Ensemble methods: a review, in: Advances in Machine Learning and Data Mining for Astronomy
    • M. Re, G. Valentini, Ensemble methods: a review, in: Advances in Machine Learning and Data Mining for Astronomy, 2012, pp. 563-582.
    • (2012) , pp. 563-582
    • Re, M.1    Valentini, G.2
  • 7
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20(8):832-844.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 8
    • 0038166193 scopus 로고    scopus 로고
    • Database-friendly random projections. Johnson-Lindenstrauss with binary coins
    • Achlioptas D. Database-friendly random projections. Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 2003, 66(4):671-687.
    • (2003) J. Comput. Syst. Sci. , vol.66 , Issue.4 , pp. 671-687
    • Achlioptas, D.1
  • 9
    • 38049179210 scopus 로고    scopus 로고
    • Discovering significant structures in clustered bio-molecular data through the bernstein inequality, in: Proceedings of the 11th International Conference, KES 2007 and XVII Italian Workshop on Neural Networks Conference on Knowledge-Based Intelligent Information and Engineering Systems: Part III, Springer-Verlag, Berlin, Heidelberg
    • A. Bertoni, G. Valentini, Discovering significant structures in clustered bio-molecular data through the bernstein inequality, in: Proceedings of the 11th International Conference, KES 2007 and XVII Italian Workshop on Neural Networks Conference on Knowledge-Based Intelligent Information and Engineering Systems: Part III, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 886-891.
    • (2007) , pp. 886-891
    • Bertoni, A.1    Valentini, G.2
  • 10
    • 78650195217 scopus 로고    scopus 로고
    • Incremental learning by heterogeneous bagging ensemble, in: Proceedings of the 6th International Conference on Advanced Data Mining and Applications, ADMA 10, Springer-Verlag, Berlin, Heidelberg
    • Q.L. Zhao, Y.J. Huang, M. Xu, Incremental learning by heterogeneous bagging ensemble, in: Proceedings of the 6th International Conference on Advanced Data Mining and Applications, ADMA 10, vol. II, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 1-12.
    • (2010) , vol.2 , pp. 1-12
    • Zhao, Q.L.1    Huang, Y.J.2    Xu, M.3
  • 11
    • 80053432303 scopus 로고    scopus 로고
    • Incremental learning based on ensemble pruning, in: 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
    • Q.-L. Zhao, Y.-H. Jiang, M. Xu, Incremental learning based on ensemble pruning, in: 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 1, 2011, pp. 377-381.
    • (2011) , vol.1 , pp. 377-381
    • Zhao, Q.-L.1    Jiang, Y.-H.2    Xu, M.3
  • 12
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods. a survey and categorisation
    • Brown G., Wyatt J., Harris R., Yao X. Diversity creation methods. a survey and categorisation. J. Inf. Fusion 2005, 6:5-20.
    • (2005) J. Inf. Fusion , vol.6 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 14
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting and randomization. Mach. Learn. 2000, 40(2):139-158.
    • (2000) Mach. Learn. , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 15
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning, in: Proceedings of the 1st International Workshop on Multiple Classifier Systems, Springer, London, UK
    • T.G. Dietterich, Ensemble methods in machine learning, in: Proceedings of the 1st International Workshop on Multiple Classifier Systems, Springer, London, UK, 2000, pp. 1-15.
    • (2000) , pp. 1-15
    • Dietterich, T.G.1
  • 16
    • 33845506212 scopus 로고    scopus 로고
    • Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles
    • Canuto A., Abreu M., Oliveira L., Xavier J., Santos A. Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recognit. Lett. 2007, 28(4):472-486.
    • (2007) Pattern Recognit. Lett. , vol.28 , Issue.4 , pp. 472-486
    • Canuto, A.1    Abreu, M.2    Oliveira, L.3    Xavier, J.4    Santos, A.5
  • 17
    • 79959409880 scopus 로고    scopus 로고
    • A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers, in: IEEE Congress on Evolutionary Computation (CEC)
    • L.E.A. Santana, L. Silva, A.M.P. Canuto, F. Pintro, K.O. Vale, A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers, in: IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1-8.
    • (2010) , pp. 1-8
    • Santana, L.E.A.1    Silva, L.2    Canuto, A.M.P.3    Pintro, F.4    Vale, K.O.5
  • 18
    • 78649938427 scopus 로고    scopus 로고
    • On the evolutionary design of heterogeneous bagging models
    • Coelho A.L.V., Nascimento D.S.C. On the evolutionary design of heterogeneous bagging models. Neurocomputing 2010, 73:3319-3322.
    • (2010) Neurocomputing , vol.73 , pp. 3319-3322
    • Coelho, A.L.V.1    Nascimento, D.S.C.2
  • 20
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 21
    • 80054738366 scopus 로고    scopus 로고
    • Combining different ways to generate diversity in bagging models: an evolutionary approach, in: International Joint Conference on Neural Networks (IJCNN)
    • D.S.C. Nascimento, A.M.P. Canuto, L.M.M. Silva, A.L.V. Coelho, Combining different ways to generate diversity in bagging models: an evolutionary approach, in: International Joint Conference on Neural Networks (IJCNN), 2011, pp. 2235-2242.
    • (2011) , pp. 2235-2242
    • Nascimento, D.S.C.1    Canuto, A.M.P.2    Silva, L.M.M.3    Coelho, A.L.V.4
  • 26
  • 27
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods. an empirical study
    • Opitz D., Maclin R. Popular ensemble methods. an empirical study. J. Artif. Intell. Res. 1999, 11:169-198.
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 28
    • 84899924912 scopus 로고    scopus 로고
    • UCI Machine Learning Repository, University of California at Irvine
    • A. Asunción, D.J. Newman, UCI Machine Learning Repository, University of California at Irvine, 2007. http://ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asunción, A.1    Newman, D.J.2
  • 30
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 31
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting. a technique combining boosting and wagging
    • Webb G.I. Multiboosting. a technique combining boosting and wagging. Mach. Learn. 2000, 40:159-196.
    • (2000) Mach. Learn. , vol.40 , pp. 159-196
    • Webb, G.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.