-
2
-
-
33748611921
-
Ensemble based systems in decision making
-
Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6(3):21-45.
-
(2006)
IEEE Circuits Syst. Mag.
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
3
-
-
77952046540
-
-
"Good" and "bad" diversity in majority vote ensembles, in: N. Gayar, J. Kittler, F. Roli (Eds.), Multiple Classifier Systems-MCS 2010, Lecture Notes in Computer Science, Springer, Berlin
-
G. Brown, L.I. Kuncheva, "Good" and "bad" diversity in majority vote ensembles, in: N. Gayar, J. Kittler, F. Roli (Eds.), Multiple Classifier Systems-MCS 2010, Lecture Notes in Computer Science, vol. 5997, Springer, Berlin, 2010, pp. 124-133.
-
(2010)
, vol.5997
, pp. 124-133
-
-
Brown, G.1
Kuncheva, L.I.2
-
4
-
-
0037403516
-
Measures of diversity in classifier ensembles
-
Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles. Mach. Learn. 2003, 51:181-207.
-
(2003)
Mach. Learn.
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
6
-
-
84899928683
-
-
Ensemble methods: a review, in: Advances in Machine Learning and Data Mining for Astronomy
-
M. Re, G. Valentini, Ensemble methods: a review, in: Advances in Machine Learning and Data Mining for Astronomy, 2012, pp. 563-582.
-
(2012)
, pp. 563-582
-
-
Re, M.1
Valentini, G.2
-
7
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20(8):832-844.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
8
-
-
0038166193
-
Database-friendly random projections. Johnson-Lindenstrauss with binary coins
-
Achlioptas D. Database-friendly random projections. Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 2003, 66(4):671-687.
-
(2003)
J. Comput. Syst. Sci.
, vol.66
, Issue.4
, pp. 671-687
-
-
Achlioptas, D.1
-
9
-
-
38049179210
-
-
Discovering significant structures in clustered bio-molecular data through the bernstein inequality, in: Proceedings of the 11th International Conference, KES 2007 and XVII Italian Workshop on Neural Networks Conference on Knowledge-Based Intelligent Information and Engineering Systems: Part III, Springer-Verlag, Berlin, Heidelberg
-
A. Bertoni, G. Valentini, Discovering significant structures in clustered bio-molecular data through the bernstein inequality, in: Proceedings of the 11th International Conference, KES 2007 and XVII Italian Workshop on Neural Networks Conference on Knowledge-Based Intelligent Information and Engineering Systems: Part III, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 886-891.
-
(2007)
, pp. 886-891
-
-
Bertoni, A.1
Valentini, G.2
-
10
-
-
78650195217
-
-
Incremental learning by heterogeneous bagging ensemble, in: Proceedings of the 6th International Conference on Advanced Data Mining and Applications, ADMA 10, Springer-Verlag, Berlin, Heidelberg
-
Q.L. Zhao, Y.J. Huang, M. Xu, Incremental learning by heterogeneous bagging ensemble, in: Proceedings of the 6th International Conference on Advanced Data Mining and Applications, ADMA 10, vol. II, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 1-12.
-
(2010)
, vol.2
, pp. 1-12
-
-
Zhao, Q.L.1
Huang, Y.J.2
Xu, M.3
-
11
-
-
80053432303
-
-
Incremental learning based on ensemble pruning, in: 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
-
Q.-L. Zhao, Y.-H. Jiang, M. Xu, Incremental learning based on ensemble pruning, in: 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 1, 2011, pp. 377-381.
-
(2011)
, vol.1
, pp. 377-381
-
-
Zhao, Q.-L.1
Jiang, Y.-H.2
Xu, M.3
-
12
-
-
10444221886
-
Diversity creation methods. a survey and categorisation
-
Brown G., Wyatt J., Harris R., Yao X. Diversity creation methods. a survey and categorisation. J. Inf. Fusion 2005, 6:5-20.
-
(2005)
J. Inf. Fusion
, vol.6
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
13
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach. Learn. 2001, 45:5-32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
14
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting and randomization
-
Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting and randomization. Mach. Learn. 2000, 40(2):139-158.
-
(2000)
Mach. Learn.
, vol.40
, Issue.2
, pp. 139-158
-
-
Dietterich, T.G.1
-
15
-
-
80053403826
-
-
Ensemble methods in machine learning, in: Proceedings of the 1st International Workshop on Multiple Classifier Systems, Springer, London, UK
-
T.G. Dietterich, Ensemble methods in machine learning, in: Proceedings of the 1st International Workshop on Multiple Classifier Systems, Springer, London, UK, 2000, pp. 1-15.
-
(2000)
, pp. 1-15
-
-
Dietterich, T.G.1
-
16
-
-
33845506212
-
Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles
-
Canuto A., Abreu M., Oliveira L., Xavier J., Santos A. Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recognit. Lett. 2007, 28(4):472-486.
-
(2007)
Pattern Recognit. Lett.
, vol.28
, Issue.4
, pp. 472-486
-
-
Canuto, A.1
Abreu, M.2
Oliveira, L.3
Xavier, J.4
Santos, A.5
-
17
-
-
79959409880
-
-
A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers, in: IEEE Congress on Evolutionary Computation (CEC)
-
L.E.A. Santana, L. Silva, A.M.P. Canuto, F. Pintro, K.O. Vale, A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers, in: IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1-8.
-
(2010)
, pp. 1-8
-
-
Santana, L.E.A.1
Silva, L.2
Canuto, A.M.P.3
Pintro, F.4
Vale, K.O.5
-
18
-
-
78649938427
-
On the evolutionary design of heterogeneous bagging models
-
Coelho A.L.V., Nascimento D.S.C. On the evolutionary design of heterogeneous bagging models. Neurocomputing 2010, 73:3319-3322.
-
(2010)
Neurocomputing
, vol.73
, pp. 3319-3322
-
-
Coelho, A.L.V.1
Nascimento, D.S.C.2
-
19
-
-
76649135491
-
Ensembling heterogeneous learning models with boosting
-
Springer, Berlin
-
Nascimento D.S.C., Coelho A.L.V. Ensembling heterogeneous learning models with boosting. Neural Information Processing-ICONIP 2009, Part I, Lecture Notes in Computer Science 2009, vol. 5863:512-519. Springer, Berlin.
-
(2009)
Neural Information Processing-ICONIP 2009, Part I, Lecture Notes in Computer Science
, vol.5863
, pp. 512-519
-
-
Nascimento, D.S.C.1
Coelho, A.L.V.2
-
20
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 1996, 24:123-140.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
21
-
-
80054738366
-
-
Combining different ways to generate diversity in bagging models: an evolutionary approach, in: International Joint Conference on Neural Networks (IJCNN)
-
D.S.C. Nascimento, A.M.P. Canuto, L.M.M. Silva, A.L.V. Coelho, Combining different ways to generate diversity in bagging models: an evolutionary approach, in: International Joint Conference on Neural Networks (IJCNN), 2011, pp. 2235-2242.
-
(2011)
, pp. 2235-2242
-
-
Nascimento, D.S.C.1
Canuto, A.M.P.2
Silva, L.M.M.3
Coelho, A.L.V.4
-
22
-
-
33745891586
-
-
Springer, Berlin
-
Guyon I., Gunn S., Nikravesh M., Zadeh L.A. Feature Extraction. Foundations and Applications 2006, Springer, Berlin.
-
(2006)
Feature Extraction. Foundations and Applications
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.A.4
-
27
-
-
0000551189
-
Popular ensemble methods. an empirical study
-
Opitz D., Maclin R. Popular ensemble methods. an empirical study. J. Artif. Intell. Res. 1999, 11:169-198.
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
28
-
-
84899924912
-
-
UCI Machine Learning Repository, University of California at Irvine
-
A. Asunción, D.J. Newman, UCI Machine Learning Repository, University of California at Irvine, 2007. http://ics.uci.edu/~mlearn/MLRepository.html.
-
(2007)
-
-
Asunción, A.1
Newman, D.J.2
-
30
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
31
-
-
0034247206
-
Multiboosting. a technique combining boosting and wagging
-
Webb G.I. Multiboosting. a technique combining boosting and wagging. Mach. Learn. 2000, 40:159-196.
-
(2000)
Mach. Learn.
, vol.40
, pp. 159-196
-
-
Webb, G.I.1
-
32
-
-
60649115993
-
-
Springer, Berlin
-
Brazdil P., Carrier C.G., Soares C., Vilalta R. Metalearning. Applications to Data Mining 2009, Springer, Berlin.
-
(2009)
Metalearning. Applications to Data Mining
-
-
Brazdil, P.1
Carrier, C.G.2
Soares, C.3
Vilalta, R.4
|