메뉴 건너뛰기




Volumn 19, Issue 5, 2014, Pages 292-303

Modeling the evolution of molecular systems from a mechanistic perspective

Author keywords

Emergent properties; Evolutionary systems biology; Gene duplication; Genome duplication; Genotype phenotype mapping

Indexed keywords

BIOLOGICAL MODEL; GENE DUPLICATION; GENETICS; GENOTYPE; MOLECULAR EVOLUTION; PHENOTYPE; PLANT; PLANT GENOME; SYSTEMS BIOLOGY;

EID: 84899934307     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2014.03.004     Document Type: Review
Times cited : (8)

References (159)
  • 1
    • 0035775725 scopus 로고    scopus 로고
    • A new approach to decoding life: systems biology
    • Ideker T., et al. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2001, 2:343-372.
    • (2001) Annu. Rev. Genomics Hum. Genet. , vol.2 , pp. 343-372
    • Ideker, T.1
  • 2
    • 0037174670 scopus 로고    scopus 로고
    • Network motifs: simple building blocks of complex networks
    • Milo R., et al. Network motifs: simple building blocks of complex networks. Science 2002, 298:824-827.
    • (2002) Science , vol.298 , pp. 824-827
    • Milo, R.1
  • 3
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabasi A.L., Oltvai Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 2004, 5:101-113.
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 5
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: theory and experimental approaches
    • Alon U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 2007, 8:450-461.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 450-461
    • Alon, U.1
  • 6
    • 84968054140 scopus 로고
    • Nothing in biology makes sense except in light of evolution
    • Dobzhansky T. Nothing in biology makes sense except in light of evolution. Am. Biol. Teach. 1973, 35:125-129.
    • (1973) Am. Biol. Teach. , vol.35 , pp. 125-129
    • Dobzhansky, T.1
  • 7
    • 84865866440 scopus 로고    scopus 로고
    • Experimental evolution
    • Kawecki T.J., et al. Experimental evolution. Trends Ecol. Evol. 2012, 27:547-560.
    • (2012) Trends Ecol. Evol. , vol.27 , pp. 547-560
    • Kawecki, T.J.1
  • 8
    • 84888001845 scopus 로고    scopus 로고
    • Genome dynamics during experimental evolution
    • Barrick J.E., Lenski R.E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 2013, 14:827-839.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 827-839
    • Barrick, J.E.1    Lenski, R.E.2
  • 11
    • 64049093033 scopus 로고    scopus 로고
    • A framework for evolutionary systems biology
    • Loewe L. A framework for evolutionary systems biology. BMC Syst. Biol. 2009, 3:27.
    • (2009) BMC Syst. Biol. , vol.3 , pp. 27
    • Loewe, L.1
  • 12
    • 75149186552 scopus 로고    scopus 로고
    • Mutational robustness can facilitate adaptation
    • Draghi J.A., et al. Mutational robustness can facilitate adaptation. Nature 2010, 463:353-355.
    • (2010) Nature , vol.463 , pp. 353-355
    • Draghi, J.A.1
  • 13
    • 84860174650 scopus 로고    scopus 로고
    • Environmental robustness and the adaptability of populations
    • Stewart A.J., et al. Environmental robustness and the adaptability of populations. Evolution 2012, 66:1598-1612.
    • (2012) Evolution , vol.66 , pp. 1598-1612
    • Stewart, A.J.1
  • 14
    • 84861122792 scopus 로고
    • The synthetic problem and the genotype-phenotype relation in cellular metabolism
    • Aldine Publishing Company, C.H. Waddington (Ed.)
    • Burns J. The synthetic problem and the genotype-phenotype relation in cellular metabolism. Organization Stability and Process 1970, 47-51. Aldine Publishing Company. C.H. Waddington (Ed.).
    • (1970) Organization Stability and Process , pp. 47-51
    • Burns, J.1
  • 15
    • 0019998213 scopus 로고
    • Development and evolution
    • Goodwin B.C. Development and evolution. J. Theor. Biol. 1982, 97:43-55.
    • (1982) J. Theor. Biol. , vol.97 , pp. 43-55
    • Goodwin, B.C.1
  • 16
    • 0001618469 scopus 로고
    • Evolution and bifurcation of developmental programs
    • Oster G., Alberch P. Evolution and bifurcation of developmental programs. Evolution 1982, 36:444-459.
    • (1982) Evolution , vol.36 , pp. 444-459
    • Oster, G.1    Alberch, P.2
  • 17
    • 84870413737 scopus 로고    scopus 로고
    • The inheritance of process: a dynamical systems approach
    • Jaeger J., et al. The inheritance of process: a dynamical systems approach. J. Exp. Zool. B: Mol. Dev. Evol. 2012, 318B:591-612.
    • (2012) J. Exp. Zool. B: Mol. Dev. Evol. , vol.318 B , pp. 591-612
    • Jaeger, J.1
  • 18
    • 84876310782 scopus 로고    scopus 로고
    • Bridging the genotype-phenotype gap: what does it take?
    • Gjuvsland A.B., et al. Bridging the genotype-phenotype gap: what does it take?. J. Phys. 2013, 591:2055-2066.
    • (2013) J. Phys. , vol.591 , pp. 2055-2066
    • Gjuvsland, A.B.1
  • 19
    • 0000907353 scopus 로고
    • The roles of mutation, inbreeding, crossbreeding, and selection in evolution
    • D.F. Jones (Ed.)
    • Wright S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of the Sixth International Congress on Genetics 1932, 356-366. D.F. Jones (Ed.).
    • (1932) Proceedings of the Sixth International Congress on Genetics , pp. 356-366
    • Wright, S.1
  • 20
    • 84881551474 scopus 로고    scopus 로고
    • Using evolutionary computations to understand the design and evolution of gene and cell regulatory networks
    • Spirov A., Holloway D. Using evolutionary computations to understand the design and evolution of gene and cell regulatory networks. Methods 2013, 62:39-55.
    • (2013) Methods , vol.62 , pp. 39-55
    • Spirov, A.1    Holloway, D.2
  • 21
    • 0028206995 scopus 로고
    • Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization
    • Wagner A. Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization. Proc. Natl. Acad. Sci. U.S.A. 1994, 91:4387-4391.
    • (1994) Proc. Natl. Acad. Sci. U.S.A. , vol.91 , pp. 4387-4391
    • Wagner, A.1
  • 22
    • 0036678862 scopus 로고    scopus 로고
    • Waddington's canalization revisited: developmental stability and evolution
    • Siegal M.L., Bergman A. Waddington's canalization revisited: developmental stability and evolution. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:10528-10532.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 10528-10532
    • Siegal, M.L.1    Bergman, A.2
  • 23
    • 0042154192 scopus 로고    scopus 로고
    • Evolutionary capacitance as a general feature of complex gene networks
    • Bergman A., Siegal M.L. Evolutionary capacitance as a general feature of complex gene networks. Nature 2003, 424:549-552.
    • (2003) Nature , vol.424 , pp. 549-552
    • Bergman, A.1    Siegal, M.L.2
  • 24
    • 33644745138 scopus 로고    scopus 로고
    • Sexual reproduction selects for robustness and negative epistasis in artificial gene networks
    • Azevedo R.B.R., et al. Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 2006, 443:87-90.
    • (2006) Nature , vol.443 , pp. 87-90
    • Azevedo, R.B.R.1
  • 25
    • 35348892535 scopus 로고    scopus 로고
    • Innovation and robustness in complex regulatory gene networks
    • Ciliberti S., et al. Innovation and robustness in complex regulatory gene networks. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:13591-13596.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 13591-13596
    • Ciliberti, S.1
  • 26
    • 43149098529 scopus 로고    scopus 로고
    • Multifunctionality and robustness trade-offs in model genetic circuits
    • Martin O.C., Wagner A. Multifunctionality and robustness trade-offs in model genetic circuits. Biophys. J. 2008, 94:2927-2937.
    • (2008) Biophys. J. , vol.94 , pp. 2927-2937
    • Martin, O.C.1    Wagner, A.2
  • 27
    • 67651180919 scopus 로고    scopus 로고
    • The role of genome and gene regulatory network canalization in the evolution of multi-trait polymorphisms and sympatric speciation
    • ten Tusscher K.H., Hogeweg P. The role of genome and gene regulatory network canalization in the evolution of multi-trait polymorphisms and sympatric speciation. BMC Evol. Biol. 2009, 9:159.
    • (2009) BMC Evol. Biol. , vol.9 , pp. 159
    • ten Tusscher, K.H.1    Hogeweg, P.2
  • 28
    • 77950854888 scopus 로고    scopus 로고
    • Specialization can drive the evolution of modularity
    • Espinosa-Soto C., Wagner A. Specialization can drive the evolution of modularity. PLoS Comput. Biol. 2010, 6:e1000719.
    • (2010) PLoS Comput. Biol. , vol.6
    • Espinosa-Soto, C.1    Wagner, A.2
  • 29
    • 84856305258 scopus 로고    scopus 로고
    • The causes of epistasis in genetic networks
    • Macia J., et al. The causes of epistasis in genetic networks. Evolution 2012, 66:586-596.
    • (2012) Evolution , vol.66 , pp. 586-596
    • Macia, J.1
  • 30
    • 84876933183 scopus 로고    scopus 로고
    • Cooperative adaptive responses in gene regulatory networks with many degrees of freedom
    • Inoue M., Kaneko K. Cooperative adaptive responses in gene regulatory networks with many degrees of freedom. PLoS Comput. Biol. 2013, 9:e1003001.
    • (2013) PLoS Comput. Biol. , vol.9
    • Inoue, M.1    Kaneko, K.2
  • 31
    • 25444448797 scopus 로고    scopus 로고
    • Spontaneous evolution of modularity and network motifs
    • Kashtan N., Alon U. Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13773-13778.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 13773-13778
    • Kashtan, N.1    Alon, U.2
  • 32
    • 84879543682 scopus 로고    scopus 로고
    • Constraint and contingency in multifunctional gene regulatory circuits
    • Payne J.L., Wagner A. Constraint and contingency in multifunctional gene regulatory circuits. PLoS Comput. Biol. 2013, 9:e1003071.
    • (2013) PLoS Comput. Biol. , vol.9
    • Payne, J.L.1    Wagner, A.2
  • 33
    • 84879052409 scopus 로고    scopus 로고
    • The evolutionary origins of modularity
    • Clune J., et al. The evolutionary origins of modularity. Proc. R. Soc. B 2013, 280:20122863.
    • (2013) Proc. R. Soc. B , vol.280 , pp. 20122863
    • Clune, J.1
  • 34
    • 0347635508 scopus 로고    scopus 로고
    • Design of genetic networks with specified functions by evolution in silico
    • Francois P., Hakim V. Design of genetic networks with specified functions by evolution in silico. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:580-585.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 580-585
    • Francois, P.1    Hakim, V.2
  • 35
    • 37349116795 scopus 로고    scopus 로고
    • Deriving structure from evolution: metazoan segmentation
    • Francois P., et al. Deriving structure from evolution: metazoan segmentation. Mol. Syst. Biol. 2007, 3:154.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 154
    • Francois, P.1
  • 36
    • 77954656146 scopus 로고    scopus 로고
    • Predicting embryonic patterning using mutual entropy fitness and in silico evolution
    • Francois P., Siggia E.D. Predicting embryonic patterning using mutual entropy fitness and in silico evolution. Development 2010, 137:2385-2395.
    • (2010) Development , vol.137 , pp. 2385-2395
    • Francois, P.1    Siggia, E.D.2
  • 37
    • 78049513394 scopus 로고    scopus 로고
    • An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients
    • Cotterell J., Sharpe J. An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients. Mol. Syst. Biol. 2010, 6:425.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 425
    • Cotterell, J.1    Sharpe, J.2
  • 38
    • 80455124085 scopus 로고    scopus 로고
    • Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors
    • Rodrigo G., et al. Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors. Nucleic Acids Res. 2011, 39:e138.
    • (2011) Nucleic Acids Res. , vol.39
    • Rodrigo, G.1
  • 39
    • 80055085380 scopus 로고    scopus 로고
    • Evolution of networks for body plan patterning: interplay of modularity, robustness and evolvability
    • ten Tusscher K.H., Hogeweg P. Evolution of networks for body plan patterning: interplay of modularity, robustness and evolvability. PLoS Comput. Biol. 2011, 7:e1002208.
    • (2011) PLoS Comput. Biol. , vol.7
    • ten Tusscher, K.H.1    Hogeweg, P.2
  • 40
    • 84866561672 scopus 로고    scopus 로고
    • Computational design of genomic transcriptional networks with adaptation to varying environments
    • Carrera J., et al. Computational design of genomic transcriptional networks with adaptation to varying environments. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:15277-15282.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 15277-15282
    • Carrera, J.1
  • 41
    • 84863208931 scopus 로고    scopus 로고
    • Virtual genomes in flux: an interplay of neutrality and adaptability explains genome expansion and streamlining
    • Cuypers T.D., Hogeweg P. Virtual genomes in flux: an interplay of neutrality and adaptability explains genome expansion and streamlining. Genome Biol. Evol. 2012, 4:212-229.
    • (2012) Genome Biol. Evol. , vol.4 , pp. 212-229
    • Cuypers, T.D.1    Hogeweg, P.2
  • 42
    • 84866315109 scopus 로고    scopus 로고
    • Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives
    • Warmflash A., et al. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives. Phys. Biol. 2012, 9:056001.
    • (2012) Phys. Biol. , vol.9 , pp. 056001
    • Warmflash, A.1
  • 43
    • 84876279282 scopus 로고    scopus 로고
    • Mechanistic explanations for restricted evolutionary paths that emerge from gene regulatory networks
    • Cotterell J., Sharpe J. Mechanistic explanations for restricted evolutionary paths that emerge from gene regulatory networks. PLoS ONE 2013, 8:e61178.
    • (2013) PLoS ONE , vol.8
    • Cotterell, J.1    Sharpe, J.2
  • 44
    • 84875811500 scopus 로고    scopus 로고
    • Evolution of transcription networks in response to temporal fluctuations
    • Roh K., et al. Evolution of transcription networks in response to temporal fluctuations. Evolution 2013, 67:1091-1104.
    • (2013) Evolution , vol.67 , pp. 1091-1104
    • Roh, K.1
  • 45
    • 37549024140 scopus 로고    scopus 로고
    • Evolutionary modelling of feed forward loops in gene regulatory networks
    • Cooper M.B., et al. Evolutionary modelling of feed forward loops in gene regulatory networks. Biosystems 2008, 91:231-244.
    • (2008) Biosystems , vol.91 , pp. 231-244
    • Cooper, M.B.1
  • 46
    • 67649845851 scopus 로고    scopus 로고
    • Statistical mechanics of convergent evolution in spatial patterning
    • Khatri B.S., et al. Statistical mechanics of convergent evolution in spatial patterning. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9564-9569.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 9564-9569
    • Khatri, B.S.1
  • 47
    • 84875595297 scopus 로고    scopus 로고
    • Model of haplotype and phenotype in the evolution of a duplicated autoregulatory activator
    • Dasmahapatra S. Model of haplotype and phenotype in the evolution of a duplicated autoregulatory activator. J. Theor. Biol. 2013, 325:83-102.
    • (2013) J. Theor. Biol. , vol.325 , pp. 83-102
    • Dasmahapatra, S.1
  • 48
    • 79951548111 scopus 로고    scopus 로고
    • Changes in selective effects over time facilitate turnover of enhancer sequences
    • Bullaughey K. Changes in selective effects over time facilitate turnover of enhancer sequences. Genetics 2011, 187:567-582.
    • (2011) Genetics , vol.187 , pp. 567-582
    • Bullaughey, K.1
  • 49
    • 84873504350 scopus 로고    scopus 로고
    • The underlying molecular and network level mechanisms in the evolution of robustness in gene regulatory networks
    • Pujato M., et al. The underlying molecular and network level mechanisms in the evolution of robustness in gene regulatory networks. PLoS Comput. Biol. 2013, 9:e1002865.
    • (2013) PLoS Comput. Biol. , vol.9
    • Pujato, M.1
  • 50
    • 38049049174 scopus 로고    scopus 로고
    • Monte Carlo simulation of a simple gene network yields new evolutionary insights
    • Andrecut M., et al. Monte Carlo simulation of a simple gene network yields new evolutionary insights. J. Theor. Biol. 2008, 250:468-474.
    • (2008) J. Theor. Biol. , vol.250 , pp. 468-474
    • Andrecut, M.1
  • 51
    • 45549085296 scopus 로고    scopus 로고
    • Predictive behavior within microbial genetic networks
    • Tagkopoulos I., et al. Predictive behavior within microbial genetic networks. Science 2008, 320:1313-1317.
    • (2008) Science , vol.320 , pp. 1313-1317
    • Tagkopoulos, I.1
  • 52
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • Karlebach G., Shamir R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 2008, 9:770-780.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 53
    • 80054798529 scopus 로고    scopus 로고
    • Motifs emerge from function in model gene regulatory networks
    • Burda Z., et al. Motifs emerge from function in model gene regulatory networks. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17263-17268.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 17263-17268
    • Burda, Z.1
  • 54
    • 66249092825 scopus 로고    scopus 로고
    • An analytically solvable model for rapid evolution of modular structure
    • Kashtan N., et al. An analytically solvable model for rapid evolution of modular structure. PLoS Comput. Biol. 2009, 5:e1000355.
    • (2009) PLoS Comput. Biol. , vol.5
    • Kashtan, N.1
  • 55
    • 35348853077 scopus 로고    scopus 로고
    • Varying environments can speed up evolution
    • Kashtan N., et al. Varying environments can speed up evolution. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:13711-13716.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 13711-13716
    • Kashtan, N.1
  • 56
    • 57149097265 scopus 로고    scopus 로고
    • Facilitated variation: how evolution learns from past environments to generalize to new environments
    • Parter M., et al. Facilitated variation: how evolution learns from past environments to generalize to new environments. PLoS Comput. Biol. 2008, 4:e1000206.
    • (2008) PLoS Comput. Biol. , vol.4
    • Parter, M.1
  • 57
    • 48249134043 scopus 로고    scopus 로고
    • Evolution of evolvability in gene regulatory networks
    • Crombach A., Hogeweg P. Evolution of evolvability in gene regulatory networks. PLoS Comput. Biol. 2008, 4:e1000112.
    • (2008) PLoS Comput. Biol. , vol.4
    • Crombach, A.1    Hogeweg, P.2
  • 58
    • 60649098397 scopus 로고    scopus 로고
    • The evolutionary dynamics of evolvability in a gene network model
    • Draghi J., Wagner G.P. The evolutionary dynamics of evolvability in a gene network model. J. Evol. Biol. 2009, 22:599-611.
    • (2009) J. Evol. Biol. , vol.22 , pp. 599-611
    • Draghi, J.1    Wagner, G.P.2
  • 59
    • 0033518234 scopus 로고    scopus 로고
    • From molecular to modular cell biology
    • Hartwell L.H., et al. From molecular to modular cell biology. Nature 1999, 402:C47-C52.
    • (1999) Nature , vol.402
    • Hartwell, L.H.1
  • 61
    • 68149110046 scopus 로고    scopus 로고
    • Extinctions in heterogeneous environments and the evolution of modularity
    • Kashtan N., et al. Extinctions in heterogeneous environments and the evolution of modularity. Evolution 2009, 63:1964-1975.
    • (2009) Evolution , vol.63 , pp. 1964-1975
    • Kashtan, N.1
  • 62
    • 2942677286 scopus 로고    scopus 로고
    • Networks, dynamics, and modularity
    • Variano E.A., et al. Networks, dynamics, and modularity. Phys. Rev. Lett. 2004, 92:188701.
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 188701
    • Variano, E.A.1
  • 63
    • 0034547631 scopus 로고    scopus 로고
    • Duplication of modules facilitates the evolution of functional specialization
    • Calabretta R., et al. Duplication of modules facilitates the evolution of functional specialization. Artif. Life 2000, 6:69-84.
    • (2000) Artif. Life , vol.6 , pp. 69-84
    • Calabretta, R.1
  • 64
    • 36248936497 scopus 로고    scopus 로고
    • The road to modularity
    • Wagner G.P., et al. The road to modularity. Nat. Rev. Genet. 2007, 8:921-931.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 921-931
    • Wagner, G.P.1
  • 65
    • 34547396004 scopus 로고    scopus 로고
    • The frailty of adaptive hypotheses for the origins of organismal complexity
    • Lynch M. The frailty of adaptive hypotheses for the origins of organismal complexity. Proc. Natl. Acad. Sci. U.S.A. 2007, 104(Suppl. 1):8597-8604.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , Issue.SUPPL. 1 , pp. 8597-8604
    • Lynch, M.1
  • 66
    • 0029661331 scopus 로고    scopus 로고
    • Does evolutionary plasticity evolve?
    • Wagner A. Does evolutionary plasticity evolve?. Evolution 1996, 50:1008-1023.
    • (1996) Evolution , vol.50 , pp. 1008-1023
    • Wagner, A.1
  • 67
    • 0030162729 scopus 로고    scopus 로고
    • Genetic redundancy caused by gene duplications and its evolution in networks of transcriptional regulators
    • Wagner A. Genetic redundancy caused by gene duplications and its evolution in networks of transcriptional regulators. Biol. Cybern. 1996, 74:557-567.
    • (1996) Biol. Cybern. , vol.74 , pp. 557-567
    • Wagner, A.1
  • 68
    • 0034634395 scopus 로고    scopus 로고
    • The evolutionary fate and consequences of duplicate genes
    • Lynch M., Conery J.S. The evolutionary fate and consequences of duplicate genes. Science 2000, 290:1151-1155.
    • (2000) Science , vol.290 , pp. 1151-1155
    • Lynch, M.1    Conery, J.S.2
  • 69
    • 84859632524 scopus 로고    scopus 로고
    • Duplicate retention after small- and large-scale duplications
    • Wiley, D.A. Liberles, K. Dittmar (Eds.)
    • Maere S., Van de Peer Y. Duplicate retention after small- and large-scale duplications. Evolution after Gene Duplication 2010, 31-56. Wiley. D.A. Liberles, K. Dittmar (Eds.).
    • (2010) Evolution after Gene Duplication , pp. 31-56
    • Maere, S.1    Van de Peer, Y.2
  • 71
    • 51149203927 scopus 로고
    • Canalization of development and the inheritance of acquired characters
    • Waddington C.H. Canalization of development and the inheritance of acquired characters. Science 1942, 150:563-565.
    • (1942) Science , vol.150 , pp. 563-565
    • Waddington, C.H.1
  • 73
    • 84873308222 scopus 로고    scopus 로고
    • Guided evolution of in silico microbial populations in complex environments accelerates evolutionary rates through a step-wise adaptation
    • Mozhayskiy V., Tagkopoulos I. Guided evolution of in silico microbial populations in complex environments accelerates evolutionary rates through a step-wise adaptation. BMC Bioinformatics 2012, 13:S10.
    • (2012) BMC Bioinformatics , vol.13
    • Mozhayskiy, V.1    Tagkopoulos, I.2
  • 74
    • 36348992094 scopus 로고    scopus 로고
    • Robustness and evolvability: a paradox resolved
    • Wagner A. Robustness and evolvability: a paradox resolved. Proc. R. Soc. Lond. B: Biol. Sci. 2008, 275:91-100.
    • (2008) Proc. R. Soc. Lond. B: Biol. Sci. , vol.275 , pp. 91-100
    • Wagner, A.1
  • 75
    • 84902650318 scopus 로고    scopus 로고
    • Robustness, evolvability, and the logic of genetic regulation
    • Payne J.L., et al. Robustness, evolvability, and the logic of genetic regulation. Artif. Life 2014, 20:111-126.
    • (2014) Artif. Life , vol.20 , pp. 111-126
    • Payne, J.L.1
  • 76
    • 77955844575 scopus 로고    scopus 로고
    • Robustness and evolvability
    • Masel J., Trotter M.V. Robustness and evolvability. Trends Genet. 2010, 26:406-414.
    • (2010) Trends Genet. , vol.26 , pp. 406-414
    • Masel, J.1    Trotter, M.V.2
  • 77
    • 84894229927 scopus 로고    scopus 로고
    • The robustness and evolvability of transcription factor binding sites
    • Payne J.L., Wagner A. The robustness and evolvability of transcription factor binding sites. Science 2014, 343:875-877.
    • (2014) Science , vol.343 , pp. 875-877
    • Payne, J.L.1    Wagner, A.2
  • 78
    • 33847650979 scopus 로고    scopus 로고
    • Robustness and evolvability in genetic regulatory networks
    • Aldana M., et al. Robustness and evolvability in genetic regulatory networks. J. Theor. Biol. 2007, 245:433-448.
    • (2007) J. Theor. Biol. , vol.245 , pp. 433-448
    • Aldana, M.1
  • 79
    • 84866931077 scopus 로고    scopus 로고
    • Criticality is an emergent property of genetic networks that exhibit evolvability
    • Torres-Sosa C., et al. Criticality is an emergent property of genetic networks that exhibit evolvability. PLoS Comput. Biol. 2012, 8:e1002669.
    • (2012) PLoS Comput. Biol. , vol.8
    • Torres-Sosa, C.1
  • 80
    • 84871432617 scopus 로고    scopus 로고
    • Environmental noise, genetic diversity and the evolution of evolvability and robustness in model gene networks
    • Steiner C.F. Environmental noise, genetic diversity and the evolution of evolvability and robustness in model gene networks. PLoS ONE 2012, 10.1371/journal.pone.0052204.
    • (2012) PLoS ONE
    • Steiner, C.F.1
  • 81
    • 84877624028 scopus 로고    scopus 로고
    • The influence of assortativity on the robustness and evolvability of gene regulatory networks upon gene birth
    • Pechenick D.A., et al. The influence of assortativity on the robustness and evolvability of gene regulatory networks upon gene birth. J. Theor. Biol. 2013, 330:26-36.
    • (2013) J. Theor. Biol. , vol.330 , pp. 26-36
    • Pechenick, D.A.1
  • 82
    • 84866535011 scopus 로고    scopus 로고
    • Whole genome duplication affects evolvability of flowering time in an autotetraploid plant
    • Martin S.L., Husband B.C. Whole genome duplication affects evolvability of flowering time in an autotetraploid plant. PLoS ONE 2012, 10.1371/journal.pone.0044784.
    • (2012) PLoS ONE
    • Martin, S.L.1    Husband, B.C.2
  • 84
    • 33846551980 scopus 로고    scopus 로고
    • Empirical fitness landscapes reveal accessible evolutionary paths
    • Poelwijk F.J., et al. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 2007, 445:383-386.
    • (2007) Nature , vol.445 , pp. 383-386
    • Poelwijk, F.J.1
  • 85
    • 80855127462 scopus 로고    scopus 로고
    • The causes of epistasis
    • de Visser J.A.G.M., et al. The causes of epistasis. Proc. Biol. Sci. 2011, 278:3617-3624.
    • (2011) Proc. Biol. Sci. , vol.278 , pp. 3617-3624
    • de Visser, J.A.G.M.1
  • 86
    • 84867781208 scopus 로고    scopus 로고
    • Epistasis as the primary factor in molecular evolution
    • Breen M.S., et al. Epistasis as the primary factor in molecular evolution. Nature 2012, 490:535-538.
    • (2012) Nature , vol.490 , pp. 535-538
    • Breen, M.S.1
  • 87
    • 78650592680 scopus 로고    scopus 로고
    • Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes
    • Poelwijk F.J., et al. Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J. Theor. Biol. 2011, 272:141-144.
    • (2011) J. Theor. Biol. , vol.272 , pp. 141-144
    • Poelwijk, F.J.1
  • 88
    • 84882790991 scopus 로고    scopus 로고
    • Experiments on the role of deleterious mutations as stepping stones in adaptive evolution
    • Covert A.W., et al. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E3171-E3178.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110
    • Covert, A.W.1
  • 89
    • 21044446722 scopus 로고    scopus 로고
    • Rapid evolutionary escape by large populations from local fitness peaks is likely in nature
    • Weinreich D.M., Chao L. Rapid evolutionary escape by large populations from local fitness peaks is likely in nature. Evolution 2005, 59:1175-1182.
    • (2005) Evolution , vol.59 , pp. 1175-1182
    • Weinreich, D.M.1    Chao, L.2
  • 90
    • 0001650545 scopus 로고
    • A multilevel neuromolecular architecture that uses the extradimensional bypass principle to facilitate evolutionary learning
    • Chen J.C., Conrad M. A multilevel neuromolecular architecture that uses the extradimensional bypass principle to facilitate evolutionary learning. Phys. D 1994, 75:417-437.
    • (1994) Phys. D , vol.75 , pp. 417-437
    • Chen, J.C.1    Conrad, M.2
  • 91
    • 0002314711 scopus 로고    scopus 로고
    • Towards high evolvability dynamics
    • Kluwer Academic Publishers, G. Van de Vijver (Ed.)
    • Conrad M. Towards high evolvability dynamics. Evolutionary Systems 1998, 33-43. Kluwer Academic Publishers. G. Van de Vijver (Ed.).
    • (1998) Evolutionary Systems , pp. 33-43
    • Conrad, M.1
  • 92
    • 0036139281 scopus 로고    scopus 로고
    • Extradimensional bypass
    • Cariani P.A. Extradimensional bypass. Biosystems 2002, 64:47-53.
    • (2002) Biosystems , vol.64 , pp. 47-53
    • Cariani, P.A.1
  • 93
    • 0031284943 scopus 로고    scopus 로고
    • Evolution and speciation on holey adaptive landscapes
    • Gavrilets S. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 1997, 12:307-312.
    • (1997) Trends Ecol. Evol. , vol.12 , pp. 307-312
    • Gavrilets, S.1
  • 94
    • 0032804774 scopus 로고    scopus 로고
    • A dynamical theory of speciation on holey adaptive landscapes
    • Gavrilets S. A dynamical theory of speciation on holey adaptive landscapes. Am. Nat. 1999, 154:1-22.
    • (1999) Am. Nat. , vol.154 , pp. 1-22
    • Gavrilets, S.1
  • 95
    • 0028504136 scopus 로고
    • Evolution escapes rugged fitness landscapes by gene or genome doubling: the blessing of higher dimensionality
    • Gordon R. Evolution escapes rugged fitness landscapes by gene or genome doubling: the blessing of higher dimensionality. Comput. Chem. 1994, 18:325-331.
    • (1994) Comput. Chem. , vol.18 , pp. 325-331
    • Gordon, R.1
  • 96
    • 79961148205 scopus 로고    scopus 로고
    • Tradeoffs and optimality in the evolution of gene regulation
    • Poelwijk F.J., et al. Tradeoffs and optimality in the evolution of gene regulation. Cell 2011, 146:462-470.
    • (2011) Cell , vol.146 , pp. 462-470
    • Poelwijk, F.J.1
  • 97
    • 84861663597 scopus 로고    scopus 로고
    • Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space
    • Shoval O., et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science 2012, 336:1157-1160.
    • (2012) Science , vol.336 , pp. 1157-1160
    • Shoval, O.1
  • 98
    • 84873635856 scopus 로고    scopus 로고
    • Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli
    • Dragosits M., et al. Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol. Syst. Biol. 2013, 9:643.
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 643
    • Dragosits, M.1
  • 99
    • 35148863240 scopus 로고    scopus 로고
    • Gene duplication and the adaptive evolution of a classic genetic switch
    • Hittinger C.T., Carroll S.B. Gene duplication and the adaptive evolution of a classic genetic switch. Nature 2007, 449. 677-681.
    • (2007) Nature , vol.449 , pp. 677-681
    • Hittinger, C.T.1    Carroll, S.B.2
  • 100
    • 49649114289 scopus 로고    scopus 로고
    • Escape from adaptive conflict after duplication in an anthocyanin pathway gene
    • Des Marais D.L., Rausher M.D. Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 2008, 454:762-765.
    • (2008) Nature , vol.454 , pp. 762-765
    • Des Marais, D.L.1    Rausher, M.D.2
  • 101
    • 84871697209 scopus 로고    scopus 로고
    • Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication
    • Voordeckers K., et al. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol. 2012, 10:e1001446.
    • (2012) PLoS Biol. , vol.10
    • Voordeckers, K.1
  • 102
    • 84857374810 scopus 로고    scopus 로고
    • Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates
    • Huang R.Q., et al. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2966-2971.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 2966-2971
    • Huang, R.Q.1
  • 103
    • 84866267075 scopus 로고    scopus 로고
    • Escape from adaptive conflict follows from weak functional trade-offs and mutational robustness
    • Sikosek T., et al. Escape from adaptive conflict follows from weak functional trade-offs and mutational robustness. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14888-14893.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 14888-14893
    • Sikosek, T.1
  • 104
    • 71149122029 scopus 로고    scopus 로고
    • Mechanism of auxin-regulated gene expression in plants
    • Chapman E.J., Estelle M. Mechanism of auxin-regulated gene expression in plants. Annu. Rev. Genet. 2009, 43:265-285.
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 265-285
    • Chapman, E.J.1    Estelle, M.2
  • 105
    • 79960090553 scopus 로고    scopus 로고
    • The auxin signalling network translates dynamic input into robust patterning at the shoot apex
    • Vernoux T., et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 2011, 7:508.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 508
    • Vernoux, T.1
  • 106
    • 84871824918 scopus 로고    scopus 로고
    • Evolution of the ARF gene family in land plants: old domains, new tricks
    • Finet C., et al. Evolution of the ARF gene family in land plants: old domains, new tricks. Mol. Biol. Evol. 2013, 30:45-56.
    • (2013) Mol. Biol. Evol. , vol.30 , pp. 45-56
    • Finet, C.1
  • 108
    • 84878312692 scopus 로고    scopus 로고
    • Auxin: simply complicated
    • Sauer M., et al. Auxin: simply complicated. J. Exp. Bot. 2013, 64:2565-2577.
    • (2013) J. Exp. Bot. , vol.64 , pp. 2565-2577
    • Sauer, M.1
  • 109
    • 33845634412 scopus 로고    scopus 로고
    • Cell cycle regulation in plant development
    • Inze D., De Veylder L. Cell cycle regulation in plant development. Annu. Rev. Genet. 2006, 40:77-105.
    • (2006) Annu. Rev. Genet. , vol.40 , pp. 77-105
    • Inze, D.1    De Veylder, L.2
  • 110
    • 34547095229 scopus 로고    scopus 로고
    • The ins and outs of the plant cell cycle
    • De Veylder L., et al. The ins and outs of the plant cell cycle. Nat. Rev. Mol. Cell Biol. 2007, 8:655-665.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 655-665
    • De Veylder, L.1
  • 111
    • 84862206403 scopus 로고    scopus 로고
    • Control of the plant cell cycle by developmental and environmental cues
    • Komaki S., Sugimoto K. Control of the plant cell cycle by developmental and environmental cues. Plant Cell Physiol. 2012, 53:953-964.
    • (2012) Plant Cell Physiol. , vol.53 , pp. 953-964
    • Komaki, S.1    Sugimoto, K.2
  • 112
    • 84864818803 scopus 로고    scopus 로고
    • Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies
    • Smaczniak C., et al. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 2012, 139:3081-3098.
    • (2012) Development , vol.139 , pp. 3081-3098
    • Smaczniak, C.1
  • 113
    • 0345581665 scopus 로고    scopus 로고
    • The major clades of MADS-box genes and their role in the development and evolution of flowering plants
    • Becker A., Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 2003, 29:464-489.
    • (2003) Mol. Phylogenet. Evol. , vol.29 , pp. 464-489
    • Becker, A.1    Theissen, G.2
  • 114
    • 84859323553 scopus 로고    scopus 로고
    • Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development
    • Pabon-Mora N., et al. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol. 2012, 158:1685-1704.
    • (2012) Plant Physiol. , vol.158 , pp. 1685-1704
    • Pabon-Mora, N.1
  • 115
    • 15944373717 scopus 로고    scopus 로고
    • The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history
    • Zahn L.M., et al. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 2005, 169:2209-2223.
    • (2005) Genetics , vol.169 , pp. 2209-2223
    • Zahn, L.M.1
  • 116
    • 33847634233 scopus 로고    scopus 로고
    • Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins
    • Veron A.S., et al. Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins. Mol. Biol. Evol. 2007, 24:670-678.
    • (2007) Mol. Biol. Evol. , vol.24 , pp. 670-678
    • Veron, A.S.1
  • 118
    • 73349088723 scopus 로고    scopus 로고
    • MPF2-like-A MADS-box genes control the inflated calyx syndrome in Withania (Solanaceae): roles of Darwinian selection
    • Khan M.R., et al. MPF2-like-A MADS-box genes control the inflated calyx syndrome in Withania (Solanaceae): roles of Darwinian selection. Mol. Biol. Evol. 2009, 26:2463-2473.
    • (2009) Mol. Biol. Evol. , vol.26 , pp. 2463-2473
    • Khan, M.R.1
  • 119
    • 75949090237 scopus 로고    scopus 로고
    • Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid
    • Chang Y.Y., et al. Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol. 2010, 152:837-853.
    • (2010) Plant Physiol. , vol.152 , pp. 837-853
    • Chang, Y.Y.1
  • 120
    • 79958210171 scopus 로고    scopus 로고
    • Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'
    • Mondragon-Palomino M., Theissen G. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'. Plant J. 2011, 66:1008-1019.
    • (2011) Plant J. , vol.66 , pp. 1008-1019
    • Mondragon-Palomino, M.1    Theissen, G.2
  • 121
    • 81855211081 scopus 로고    scopus 로고
    • Gene duplication and loss in a MADS box gene transcription factor circuit
    • Lee H.L., Irish V.F. Gene duplication and loss in a MADS box gene transcription factor circuit. Mol. Biol. Evol. 2011, 28:3367-3380.
    • (2011) Mol. Biol. Evol. , vol.28 , pp. 3367-3380
    • Lee, H.L.1    Irish, V.F.2
  • 122
    • 79958782576 scopus 로고    scopus 로고
    • Robustness and evolvability in the B-system of flower development
    • Geuten K., et al. Robustness and evolvability in the B-system of flower development. Ann. Bot. 2011, 107:1545-1556.
    • (2011) Ann. Bot. , vol.107 , pp. 1545-1556
    • Geuten, K.1
  • 123
    • 84869018936 scopus 로고    scopus 로고
    • Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification
    • Vekemans D., et al. Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. Mol. Biol. Evol. 2012, 29:3793-3806.
    • (2012) Mol. Biol. Evol. , vol.29 , pp. 3793-3806
    • Vekemans, D.1
  • 124
    • 84883129653 scopus 로고    scopus 로고
    • FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes
    • Ruelens P., et al. FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nat. Commun. 2013, 10.1038/ncomms3280.
    • (2013) Nat. Commun.
    • Ruelens, P.1
  • 125
    • 3543024524 scopus 로고    scopus 로고
    • Contrasting modes of diversification in the Aux/IAA and ARF gene families
    • Remington D.L., et al. Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol. 2004, 135:1738-1752.
    • (2004) Plant Physiol. , vol.135 , pp. 1738-1752
    • Remington, D.L.1
  • 126
    • 84867123491 scopus 로고    scopus 로고
    • Expansive evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE gene family in Arabidopsis
    • Vandesteene L., et al. Expansive evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE gene family in Arabidopsis. Plant Physiol. 2012, 160:884-896.
    • (2012) Plant Physiol. , vol.160 , pp. 884-896
    • Vandesteene, L.1
  • 127
    • 79955630390 scopus 로고    scopus 로고
    • Ancestral polyploidy in seed plants and angiosperms
    • Jiao Y., et al. Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473:97-100.
    • (2011) Nature , vol.473 , pp. 97-100
    • Jiao, Y.1
  • 128
    • 70549110074 scopus 로고    scopus 로고
    • The flowering world: a tale of duplications
    • Van de Peer Y., et al. The flowering world: a tale of duplications. Trends Plant Sci. 2009, 14:680-688.
    • (2009) Trends Plant Sci. , vol.14 , pp. 680-688
    • Van de Peer, Y.1
  • 129
    • 60249085527 scopus 로고    scopus 로고
    • Polyploidy and angiosperm diversification
    • Soltis D.E., et al. Polyploidy and angiosperm diversification. Am. J. Bot. 2009, 96:336-348.
    • (2009) Am. J. Bot. , vol.96 , pp. 336-348
    • Soltis, D.E.1
  • 130
    • 23044465906 scopus 로고    scopus 로고
    • Paralogs in polyploids: one for all and all for one?
    • Veitia R.A. Paralogs in polyploids: one for all and all for one?. Plant Cell 2005, 17:4-11.
    • (2005) Plant Cell , vol.17 , pp. 4-11
    • Veitia, R.A.1
  • 131
    • 77950949952 scopus 로고    scopus 로고
    • The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution
    • Birchler J.A., Veitia R.A. The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol. 2010, 186:54-62.
    • (2010) New Phytol. , vol.186 , pp. 54-62
    • Birchler, J.A.1    Veitia, R.A.2
  • 132
    • 17244368487 scopus 로고    scopus 로고
    • Modeling gene and genome duplications in eukaryotes
    • Maere S., et al. Modeling gene and genome duplications in eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:5454-5459.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 5454-5459
    • Maere, S.1
  • 133
    • 67651039811 scopus 로고    scopus 로고
    • Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition
    • Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 2009, 60:433-453.
    • (2009) Annu. Rev. Plant Biol. , vol.60 , pp. 433-453
    • Freeling, M.1
  • 134
    • 70349325524 scopus 로고    scopus 로고
    • The evolutionary significance of ancient genome duplications
    • Van de Peer Y., et al. The evolutionary significance of ancient genome duplications. Nat. Rev. Genet. 2009, 10:725-732.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 725-732
    • Van de Peer, Y.1
  • 135
    • 84930751493 scopus 로고    scopus 로고
    • Significance and biological consequences of polyploidization in land plant evolution
    • Springer-Verlag, J. Greilhuber (Ed.)
    • Fawcett J.A., et al. Significance and biological consequences of polyploidization in land plant evolution. Plant Genome Diversity 2013, 277-293. Springer-Verlag. J. Greilhuber (Ed.).
    • (2013) Plant Genome Diversity , pp. 277-293
    • Fawcett, J.A.1
  • 136
    • 27144519666 scopus 로고    scopus 로고
    • Genome duplication and the origin of angiosperms
    • De Bodt S., et al. Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 2005, 20:591-597.
    • (2005) Trends Ecol. Evol. , vol.20 , pp. 591-597
    • De Bodt, S.1
  • 137
    • 33745610025 scopus 로고    scopus 로고
    • Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity
    • Freeling M., Thomas B.C. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res. 2006, 16:805-814.
    • (2006) Genome Res. , vol.16 , pp. 805-814
    • Freeling, M.1    Thomas, B.C.2
  • 138
    • 56549119570 scopus 로고    scopus 로고
    • Turning a hobby into a job: how duplicated genes find new functions
    • Conant G.C., Wolfe K.H. Turning a hobby into a job: how duplicated genes find new functions. Nat. Rev. Genet. 2008, 9:938-950.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 938-950
    • Conant, G.C.1    Wolfe, K.H.2
  • 139
    • 65249143921 scopus 로고    scopus 로고
    • Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event
    • Fawcett J.A., et al. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:5737-5742.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 5737-5742
    • Fawcett, J.A.1
  • 140
    • 84899949136 scopus 로고    scopus 로고
    • Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution
    • (in press)
    • Vanneste K., et al. Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Proc. Biol. Sci. 2014, (in press).
    • (2014) Proc. Biol. Sci.
    • Vanneste, K.1
  • 141
    • 84879412664 scopus 로고    scopus 로고
    • Genomic and epigenetic insights into the molecular bases of heterosis
    • Chen Z.J. Genomic and epigenetic insights into the molecular bases of heterosis. Nat. Rev. Genet. 2013, 14:471-482.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 471-482
    • Chen, Z.J.1
  • 142
    • 84881243153 scopus 로고    scopus 로고
    • Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis
    • Chao D.Y., et al. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 2013, 341:658-659.
    • (2013) Science , vol.341 , pp. 658-659
    • Chao, D.Y.1
  • 143
    • 34547611439 scopus 로고    scopus 로고
    • Increased glycolytic flux as an outcome of whole-genome duplication in yeast
    • Conant G.C., Wolfe K.H. Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol. Syst. Biol. 2007, 3:129.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 129
    • Conant, G.C.1    Wolfe, K.H.2
  • 144
    • 73349113515 scopus 로고    scopus 로고
    • Metabolic adaptation after whole genome duplication
    • van Hoek M.J.A., Hogeweg P. Metabolic adaptation after whole genome duplication. Mol. Biol. Evol. 2009, 26:2441-2453.
    • (2009) Mol. Biol. Evol. , vol.26 , pp. 2441-2453
    • van Hoek, M.J.A.1    Hogeweg, P.2
  • 145
    • 66049128566 scopus 로고    scopus 로고
    • Distinguishing among evolutionary models for the maintenance of gene duplicates
    • Hahn M.W. Distinguishing among evolutionary models for the maintenance of gene duplicates. J. Hered. 2009, 100:605-617.
    • (2009) J. Hered. , vol.100 , pp. 605-617
    • Hahn, M.W.1
  • 146
    • 36348960081 scopus 로고    scopus 로고
    • Spontaneous emergence of modularity in cellular networks
    • Sole R.V., Valverde S. Spontaneous emergence of modularity in cellular networks. J. R. Soc. Interface 2008, 5:129-133.
    • (2008) J. R. Soc. Interface , vol.5 , pp. 129-133
    • Sole, R.V.1    Valverde, S.2
  • 147
    • 34248191692 scopus 로고    scopus 로고
    • A system for studying evolution of life-like virtual organisms
    • Neyfakh A.A., et al. A system for studying evolution of life-like virtual organisms. Biol. Direct 2006, 1:23.
    • (2006) Biol. Direct , vol.1 , pp. 23
    • Neyfakh, A.A.1
  • 148
    • 78049427562 scopus 로고    scopus 로고
    • Evolution of gene regulatory networks by fluctuating selection and intrinsic constraints
    • Tsuda M.E., Kawata M. Evolution of gene regulatory networks by fluctuating selection and intrinsic constraints. PLoS Comput. Biol. 2010, 6:e1000873.
    • (2010) PLoS Comput. Biol. , vol.6
    • Tsuda, M.E.1    Kawata, M.2
  • 149
    • 34547461293 scopus 로고    scopus 로고
    • Emerging principles of regulatory evolution
    • Prud'homme B., et al. Emerging principles of regulatory evolution. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:8605-8612.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 8605-8612
    • Prud'homme, B.1
  • 150
    • 80051471463 scopus 로고    scopus 로고
    • Evolutionary bioscience as regulatory systems biology
    • Davidson E.H. Evolutionary bioscience as regulatory systems biology. Dev. Biol. 2011, 357:35-40.
    • (2011) Dev. Biol. , vol.357 , pp. 35-40
    • Davidson, E.H.1
  • 151
    • 34247855863 scopus 로고    scopus 로고
    • The locus of evolution: evo devo and the genetics of adaptation
    • Hoekstra H.E., Coyne J.A. The locus of evolution: evo devo and the genetics of adaptation. Evolution 2007, 61:995-1016.
    • (2007) Evolution , vol.61 , pp. 995-1016
    • Hoekstra, H.E.1    Coyne, J.A.2
  • 152
    • 33744942360 scopus 로고    scopus 로고
    • Evolutionary potential of a duplicated repressor-operator pair: simulating pathways using mutation data
    • Poelwijk F.J., et al. Evolutionary potential of a duplicated repressor-operator pair: simulating pathways using mutation data. PLoS Comput. Biol. 2006, 2:e58.
    • (2006) PLoS Comput. Biol. , vol.2
    • Poelwijk, F.J.1
  • 153
    • 15744387380 scopus 로고    scopus 로고
    • Transcriptional regulation by the numbers: models
    • Bintu L., et al. Transcriptional regulation by the numbers: models. Curr. Opin. Genet. Dev. 2005, 15:116-124.
    • (2005) Curr. Opin. Genet. Dev. , vol.15 , pp. 116-124
    • Bintu, L.1
  • 154
    • 33749137281 scopus 로고    scopus 로고
    • Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene
    • Janssens H., et al. Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nat. Genet. 2006, 38:1159-1165.
    • (2006) Nat. Genet. , vol.38 , pp. 1159-1165
    • Janssens, H.1
  • 155
    • 38749127589 scopus 로고    scopus 로고
    • Predicting expression patterns from regulatory sequence in Drosophila segmentation
    • Segal E., et al. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 2008, 451:535-540.
    • (2008) Nature , vol.451 , pp. 535-540
    • Segal, E.1
  • 156
    • 84881556764 scopus 로고    scopus 로고
    • A synthetic biology approach to the development of transcriptional regulatory models and custom enhancer design
    • Martinez C.A., et al. A synthetic biology approach to the development of transcriptional regulatory models and custom enhancer design. Methods 2013, 62:91-98.
    • (2013) Methods , vol.62 , pp. 91-98
    • Martinez, C.A.1
  • 157
    • 79955564964 scopus 로고    scopus 로고
    • Polyploidy and ecological adaptation in wild yarrow
    • Ramsey J. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7096-7101.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 7096-7101
    • Ramsey, J.1
  • 158
    • 33846002036 scopus 로고    scopus 로고
    • Transcriptional regulation by competing transcription factor modules
    • Hermsen R., et al. Transcriptional regulation by competing transcription factor modules. PLoS Comput. Biol. 2006, 2:1552-1560.
    • (2006) PLoS Comput. Biol. , vol.2 , pp. 1552-1560
    • Hermsen, R.1
  • 159
    • 79952257690 scopus 로고    scopus 로고
    • Epistatic interaction maps relative to multiple metabolic phenotypes
    • Snitkin E.S., Segre D. Epistatic interaction maps relative to multiple metabolic phenotypes. PLoS Genet. 2011, 7:e1001294.
    • (2011) PLoS Genet. , vol.7
    • Snitkin, E.S.1    Segre, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.