메뉴 건너뛰기




Volumn 273, Issue , 2014, Pages 49-72

An adaptive two-layer particle swarm optimization with elitist learning strategy

Author keywords

Adaptive division of labor (ADL); Adaptive two layer particle swarm optimization with elitist learning strategy (ATLPSO ELS); Memetic computing (MC); Orthogonal experimental design (OED); Particle swarm optimization (PSO)

Indexed keywords

ALGORITHMS; LEARNING SYSTEMS; PERTURBATION TECHNIQUES; STATISTICS;

EID: 84899899961     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.03.031     Document Type: Article
Times cited : (81)

References (63)
  • 1
    • 35448934039 scopus 로고    scopus 로고
    • A review of particle swarm optimization. Part I: Background and development
    • A. Banks, J. Vincent, and C. Anyakoha A review of particle swarm optimization. Part I: background and development Nat. Comput. 6 2007 467 484
    • (2007) Nat. Comput. , vol.6 , pp. 467-484
    • Banks, A.1    Vincent, J.2    Anyakoha, C.3
  • 2
    • 39049136085 scopus 로고    scopus 로고
    • A review of particle swarm optimization. Part II: Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications
    • A. Banks, J. Vincent, and C. Anyakoha A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications Nat. Comput. 7 2008 109 124
    • (2008) Nat. Comput. , vol.7 , pp. 109-124
    • Banks, A.1    Vincent, J.2    Anyakoha, C.3
  • 7
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm - Explosion, stability, and convergence in a multidimensional complex space
    • M. Clerc, and J. Kennedy The particle swarm - explosion, stability, and convergence in a multidimensional complex space IEEE Trans. Evol. Comput. 6 2002 58 73
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 8
    • 84886723307 scopus 로고    scopus 로고
    • Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
    • S. Das, S. Biswas, and S. Kundu Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization Appl. Soft Comput. 13 2013 4676 4694
    • (2013) Appl. Soft Comput. , vol.13 , pp. 4676-4694
    • Das, S.1    Biswas, S.2    Kundu, S.3
  • 11
    • 84864659396 scopus 로고    scopus 로고
    • Evolving cognitive and social experience in particle swarm optimization through differential evolution: A hybrid approach
    • M.G. Epitropakis, V.P. Plagianakos, and M.N. Vrahatis Evolving cognitive and social experience in particle swarm optimization through differential evolution: a hybrid approach Inf. Sci. 216 2012 50 92
    • (2012) Inf. Sci. , vol.216 , pp. 50-92
    • Epitropakis, M.G.1    Plagianakos, V.P.2    Vrahatis, M.N.3
  • 12
    • 84879302949 scopus 로고    scopus 로고
    • Biogeography-based optimization with orthogonal crossover
    • Q. Feng, S. Liu, G. Tang, L. Yong, and J. Zhang Biogeography-based optimization with orthogonal crossover Math. Problems Eng. 2013 2013 20
    • (2013) Math. Problems Eng. , vol.2013 , pp. 20
    • Feng, Q.1    Liu, S.2    Tang, G.3    Yong, L.4    Zhang, J.5
  • 13
    • 84857398144 scopus 로고    scopus 로고
    • Extrapolated particle swarm optimization based on orthogonal design
    • Q. Feng, S. Liu, J. Zhang, and G. Yang Extrapolated particle swarm optimization based on orthogonal design J. Convergence Inf. Technol. (JCIT) 7 2012 141 152
    • (2012) J. Convergence Inf. Technol. (JCIT) , vol.7 , pp. 141-152
    • Feng, Q.1    Liu, S.2    Zhang, J.3    Yang, G.4
  • 14
    • 84883744292 scopus 로고    scopus 로고
    • A novel artificial bee colony algorithm based on modified search equation and orthogonal learning
    • W.-F. Gao, S.-Y. Liu, and L.-L. Huang A novel artificial bee colony algorithm based on modified search equation and orthogonal learning IEEE Trans. Cybern. 43 2013 1011 1024
    • (2013) IEEE Trans. Cybern. , vol.43 , pp. 1011-1024
    • Gao, W.-F.1    Liu, S.-Y.2    Huang, L.-L.3
  • 15
    • 70349270458 scopus 로고    scopus 로고
    • A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: A case study on the CEC'2005 special session on real parameter optimization
    • S. García, D. Molina, M. Lozano, and F. Herrera A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization J. Heuristics 15 2009 617 644
    • (2009) J. Heuristics , vol.15 , pp. 617-644
    • García, S.1    Molina, D.2    Lozano, M.3    Herrera, F.4
  • 16
    • 84878340455 scopus 로고    scopus 로고
    • Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization
    • S. Gholizadeh Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization Comput. Struct. 125 2013 86 99
    • (2013) Comput. Struct. , vol.125 , pp. 86-99
    • Gholizadeh, S.1
  • 19
    • 0000757447 scopus 로고
    • A new method for determining the type of distribution of plant individuals
    • B. Hopkins, and J.G. Skellam A new method for determining the type of distribution of plant individuals Ann. Bot. 18 1954 213 227
    • (1954) Ann. Bot. , vol.18 , pp. 213-227
    • Hopkins, B.1    Skellam, J.G.2
  • 21
    • 84863726256 scopus 로고    scopus 로고
    • An intelligent augmentation of particle swarm optimization with multiple adaptive methods
    • M. Hu, T. Wu, and J.D. Weir An intelligent augmentation of particle swarm optimization with multiple adaptive methods Inf. Sci. 213 2012 68 83
    • (2012) Inf. Sci. , vol.213 , pp. 68-83
    • Hu, M.1    Wu, T.2    Weir, J.D.3
  • 22
    • 84885109957 scopus 로고    scopus 로고
    • An adaptive particle swarm optimization with multiple adaptive methods
    • M. Hu, T. Wu, and J.D. Weir An adaptive particle swarm optimization with multiple adaptive methods IEEE Trans. Evol. Comput. 17 2013 705 720
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , pp. 705-720
    • Hu, M.1    Wu, T.2    Weir, J.D.3
  • 23
    • 80055064646 scopus 로고    scopus 로고
    • Example-based learning particle swarm optimization for continuous optimization
    • H. Huang, H. Qin, Z. Hao, and A. Lim Example-based learning particle swarm optimization for continuous optimization Inf. Sci. 182 2012 125 138
    • (2012) Inf. Sci. , vol.182 , pp. 125-138
    • Huang, H.1    Qin, H.2    Hao, Z.3    Lim, A.4
  • 24
    • 84899047533 scopus 로고    scopus 로고
    • Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance
    • J. Kennedy, Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance, in: Proceedings of IEEE Congress on Evolutionary Computation, vol. 1933, 1999, pp. 1938.
    • (1999) Proceedings of IEEE Congress on Evolutionary Computation , vol.1933 , pp. 1938
    • Kennedy, J.1
  • 29
    • 34547797549 scopus 로고    scopus 로고
    • An orthogonal-array-based particle swarm optimizer with nonlinear time-varying evolution
    • C.-N. Ko, Y.-P. Chang, and C.-J. Wu An orthogonal-array-based particle swarm optimizer with nonlinear time-varying evolution Appl. Math. Comput. 191 2007 272 279
    • (2007) Appl. Math. Comput. , vol.191 , pp. 272-279
    • Ko, C.-N.1    Chang, Y.-P.2    Wu, C.-J.3
  • 31
    • 84863431143 scopus 로고    scopus 로고
    • Grey particle swarm optimization
    • M.-S. Leu, and M.-F. Yeh Grey particle swarm optimization Appl. Soft Comput. 12 2012 2985 2996
    • (2012) Appl. Soft Comput. , vol.12 , pp. 2985-2996
    • Leu, M.-S.1    Yeh, M.-F.2
  • 32
    • 84861191799 scopus 로고    scopus 로고
    • A self-learning particle swarm optimizer for global optimization problems
    • C. Li, S. Yang, and T.T. Nguyen A self-learning particle swarm optimizer for global optimization problems IEEE Trans. Syst. Man Cybern. B Cybern. 42 2012 627 646
    • (2012) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.42 , pp. 627-646
    • Li, C.1    Yang, S.2    Nguyen, T.T.3
  • 33
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • J.J. Liang, A.K. Qin, P.N. Suganthan, and S. Baskar Comprehensive learning particle swarm optimizer for global optimization of multimodal functions IEEE Trans. Evol. Comput. 10 2006 281 295
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2    Suganthan, P.N.3    Baskar, S.4
  • 35
    • 84887026005 scopus 로고    scopus 로고
    • Two-layer particle swarm optimization with intelligent division of labor
    • W.H. Lim, and N.A. Mat Isa Two-layer particle swarm optimization with intelligent division of labor Eng. Appl. Artif. Intell. 26 2013 2327 2348
    • (2013) Eng. Appl. Artif. Intell. , vol.26 , pp. 2327-2348
    • Lim, W.H.1    Mat Isa, N.A.2
  • 36
    • 84882980187 scopus 로고    scopus 로고
    • A hybridized particle swarm optimization with expanding neighborhood topology for the feature selection problem
    • M. Blesa, C. Blum, P. Festa, A. Roli, M. Sampels, Springer Berlin Heidelberg
    • Y. Marinakis, and M. Marinaki A hybridized particle swarm optimization with expanding neighborhood topology for the feature selection problem M. Blesa, C. Blum, P. Festa, A. Roli, M. Sampels, Hybrid Metaheuristics 2013 Springer Berlin Heidelberg 37 51
    • (2013) Hybrid Metaheuristics , pp. 37-51
    • Marinakis, Y.1    Marinaki, M.2
  • 37
    • 3142781923 scopus 로고    scopus 로고
    • The fully informed particle swarm: Simpler, maybe better
    • R. Mendes, J. Kennedy, and J. Neves The fully informed particle swarm: simpler, maybe better IEEE Trans. Evol. Comput. 8 2004 204 210
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , pp. 204-210
    • Mendes, R.1    Kennedy, J.2    Neves, J.3
  • 38
    • 33745616837 scopus 로고    scopus 로고
    • Neighborhood re-structuring in particle swarm optimization, AI 2005
    • A. Mohais, R. Mendes, C. Ward, and C. Posthoff Neighborhood re-structuring in particle swarm optimization, AI 2005 Adv. Artif. Intell. 2005 776 785
    • (2005) Adv. Artif. Intell. , pp. 776-785
    • Mohais, A.1    Mendes, R.2    Ward, C.3    Posthoff, C.4
  • 41
    • 84862688092 scopus 로고    scopus 로고
    • A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization
    • M. Nasir, S. Das, D. Maity, S. Sengupta, U. Halder, and P.N. Suganthan A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization Inf. Sci. 209 2012 16 36
    • (2012) Inf. Sci. , vol.209 , pp. 16-36
    • Nasir, M.1    Das, S.2    Maity, D.3    Sengupta, S.4    Halder, U.5    Suganthan, P.N.6
  • 42
    • 82655173225 scopus 로고    scopus 로고
    • A primer on memetic algorithms
    • F. Neri, C. Cotta, P. Moscato, Springer Berlin Heidelberg
    • F. Neri, and C. Cotta A primer on memetic algorithms F. Neri, C. Cotta, P. Moscato, Handbook of Memetic Algorithms 2012 Springer Berlin Heidelberg 43 52
    • (2012) Handbook of Memetic Algorithms , pp. 43-52
    • Neri, F.1    Cotta, C.2
  • 43
    • 0344291226 scopus 로고    scopus 로고
    • Recent approaches to global optimization problems through Particle Swarm Optimization
    • K.E. Parsopoulos, and M.N. Vrahatis Recent approaches to global optimization problems through Particle Swarm Optimization Nat. Comput. 1 2002 235 306
    • (2002) Nat. Comput. , vol.1 , pp. 235-306
    • Parsopoulos, K.E.1    Vrahatis, M.N.2
  • 45
    • 84878400479 scopus 로고    scopus 로고
    • A distance-based locally informed particle swarm model for multimodal optimization
    • B.Y. Qu, P.N. Suganthan, and S. Das A distance-based locally informed particle swarm model for multimodal optimization IEEE Trans. Evol. Comput. 17 2013 387 402
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , pp. 387-402
    • Qu, B.Y.1    Suganthan, P.N.2    Das, S.3
  • 46
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • A. Ratnaweera, S.K. Halgamuge, and H.C. Watson Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients IEEE Trans. Evol. Comput. 8 2004 240 255
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , pp. 240-255
    • Ratnaweera, A.1    Halgamuge, S.K.2    Watson, H.C.3
  • 47
    • 84876585331 scopus 로고    scopus 로고
    • A teaching learning based optimization based on orthogonal design for solving global optimization problems
    • S. Satapathy, A. Naik, and K. Parvathi A teaching learning based optimization based on orthogonal design for solving global optimization problems SpringerPlus 2 2013 130
    • (2013) SpringerPlus , vol.2 , pp. 130
    • Satapathy, S.1    Naik, A.2    Parvathi, K.3
  • 49
    • 0003156745 scopus 로고    scopus 로고
    • Operator and parameter adaptation in genetic algorithms
    • J.E. Smith, and T.C. Fogarty Operator and parameter adaptation in genetic algorithms Soft. Comput. 1 1997 81 87
    • (1997) Soft. Comput. , vol.1 , pp. 81-87
    • Smith, J.E.1    Fogarty, T.C.2
  • 51
    • 80053575443 scopus 로고    scopus 로고
    • Feedback learning particle swarm optimization
    • Y. Tang, Z. Wang, and J.-A. Fang Feedback learning particle swarm optimization Appl. Soft Comput. 11 2011 4713 4725
    • (2011) Appl. Soft Comput. , vol.11 , pp. 4713-4725
    • Tang, Y.1    Wang, Z.2    Fang, J.-A.3
  • 53
    • 84870252611 scopus 로고    scopus 로고
    • Diversity enhanced particle swarm optimization with neighborhood search
    • H. Wang, H. Sun, C. Li, S. Rahnamayan, and J.-S. Pan Diversity enhanced particle swarm optimization with neighborhood search Inf. Sci. 223 2013 119 135
    • (2013) Inf. Sci. , vol.223 , pp. 119-135
    • Wang, H.1    Sun, H.2    Li, C.3    Rahnamayan, S.4    Pan, J.-S.5
  • 55
    • 80054795492 scopus 로고    scopus 로고
    • Improving comprehensive learning particle swarm optimiser using generalised opposition-based learning
    • W. Wang, H. Wang, and S. Rahnamayan Improving comprehensive learning particle swarm optimiser using generalised opposition-based learning Int. J. Model. Ident. Control 14 2011 310 316
    • (2011) Int. J. Model. Ident. Control , vol.14 , pp. 310-316
    • Wang, W.1    Wang, H.2    Rahnamayan, S.3
  • 56
    • 80755186925 scopus 로고    scopus 로고
    • Enhancing the search ability of differential evolution through orthogonal crossover
    • Y. Wang, Z. Cai, and Q. Zhang Enhancing the search ability of differential evolution through orthogonal crossover Inf. Sci. 185 2012 153 177
    • (2012) Inf. Sci. , vol.185 , pp. 153-177
    • Wang, Y.1    Cai, Z.2    Zhang, Q.3
  • 57
    • 79960562019 scopus 로고    scopus 로고
    • Self-adaptive learning based particle swarm optimization
    • Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, and Q. Tian Self-adaptive learning based particle swarm optimization Inf. Sci. 181 2011 4515 4538
    • (2011) Inf. Sci. , vol.181 , pp. 4515-4538
    • Wang, Y.1    Li, B.2    Weise, T.3    Wang, J.4    Yuan, B.5    Tian, Q.6
  • 63
    • 33745683834 scopus 로고    scopus 로고
    • An improved particle swarm optimization algorithm for unit commitment
    • B. Zhao, C.X. Guo, B.R. Bai, and Y.J. Cao An improved particle swarm optimization algorithm for unit commitment Int. J. Electr. Power Energy Syst. 28 2006 482 490
    • (2006) Int. J. Electr. Power Energy Syst. , vol.28 , pp. 482-490
    • Zhao, B.1    Guo, C.X.2    Bai, B.R.3    Cao, Y.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.