-
2
-
-
0002062508
-
-
edited by L. R. Pratt and G. Hummer (AIP, New York)
-
P. H. Hünenberger, in Simulation and Theory of Electrostatic Interactions in Solution: Computational Chemistry, Biophysics, and Aqueous Solutions, edited by L. R. Pratt and G. Hummer (AIP, New York, 1999), pp. 17-83.
-
(1999)
Simulation and Theory of Electrostatic Interactions in Solution: Computational Chemistry, Biophysics, and Aqueous Solutions
, pp. 17-83
-
-
Hünenberger, P.H.1
-
3
-
-
33645968850
-
-
Advances in Polymer Sciences Vol., edited by C. Holm and K. Kremer (Springer, Berlin)
-
A. Arnold and C. Holm, in Advanced Computer Simulation Approaches for Soft Matter Sciences II, Advances in Polymer Sciences Vol. II, edited by C. Holm and K. Kremer (Springer, Berlin, 2005), pp. 59-109.
-
(2005)
Advanced Computer Simulation Approaches for Soft Matter Sciences II
, vol.2
, pp. 59-109
-
-
Arnold, A.1
Holm, C.2
-
4
-
-
45849099466
-
-
Current Topics in Membranes Vol. (Elsevier Inc.).
-
M. Karttunen, J. Rottler, I. Vattulainen, and C. Sagui, in Computational Modeling of Membrane Bilayers, Current Topics in Membranes Vol. 60 (Elsevier Inc., 2008).
-
(2008)
Computational Modeling of Membrane Bilayers
, vol.60
-
-
Karttunen, M.1
Rottler, J.2
Vattulainen, I.3
Sagui, C.4
-
5
-
-
79952189275
-
-
10.1016/j.physre2010.11.004
-
M. Mazars, Phys. Rep. 500, 43 (2011). 10.1016/j.physrep.2010.11.004
-
(2011)
Phys. Rep.
, vol.500
, pp. 43
-
-
Mazars, M.1
-
6
-
-
84887138812
-
-
10.1103/PhysRevE.88.063308
-
A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver, I. Kabadshow, F. Gaehler, F. Heber, J. Iseringhausen, M. Hofmann, M. Pippig, D. Potts, and G. Sutmann, Phys. Rev. E 88, 063308 (2013). 10.1103/PhysRevE.88.063308
-
(2013)
Phys. Rev. e
, vol.88
, pp. 063308
-
-
Arnold, A.1
Fahrenberger, F.2
Holm, C.3
Lenz, O.4
Bolten, M.5
Dachsel, H.6
Halver, R.7
Kabadshow, I.8
Gaehler, F.9
Heber, F.10
Iseringhausen, J.11
Hofmann, M.12
Pippig, M.13
Potts, D.14
Sutmann, G.15
-
7
-
-
84977266737
-
-
10.1002/and19213690304
-
P. P. Ewald, Ann. Phys. 369, 253 (1921). 10.1002/andp.19213690304
-
(1921)
Ann. Phys.
, vol.369
, pp. 253
-
-
Ewald, P.P.1
-
15
-
-
43149115638
-
-
10.1063/1.2908076
-
E. R. Smith, J. Chem. Phys. 128, 174104 (2008). 10.1063/1.2908076
-
(2008)
J. Chem. Phys.
, vol.128
, pp. 174104
-
-
Smith, E.R.1
-
17
-
-
0001626212
-
-
10.1103/PhysRevB.53.1814
-
L. Fraser, W. Foulkes, G. Rajagopal, R. Needs, S. Kenny, and A. Williamson, Phys. Rev. B 53, 1814 (1996). 10.1103/PhysRevB.53.1814
-
(1996)
Phys. Rev. B
, vol.53
, pp. 1814
-
-
Fraser, L.1
Foulkes, W.2
Rajagopal, G.3
Needs, R.4
Kenny, S.5
Williamson, A.6
-
22
-
-
3042783270
-
-
10.1080/00268970410001675554
-
V. Ballenegger and J. P. Hansen, Mol. Phys. 102, 599 (2004). 10.1080/00268970410001675554
-
(2004)
Mol. Phys.
, vol.102
, pp. 599
-
-
Ballenegger, V.1
Hansen, J.P.2
-
24
-
-
84899855089
-
-
No non-analytic \documentclass
-
No non-analytic \documentclass[12pt]{minimal}\begin{document}\hat{\bm{\rm k}}= \bm{ \rm k}/k\end{document} k ̂ = k / k can survive in (17) because the summand in (16) is absolutely convergent.
-
-
-
-
25
-
-
84899861574
-
-
The electric neutrality of the simulation cell is often invoked as the reason for the exclusion of the \documentclass[12pt]{minimal}\begin{document}\ bm{ \rm k}=0\end{document} k = 0 term in (18), but neutrality alone is not sufficient because that \documentclass[12pt]{minimal}\begin{document}\bm{ \rm k}=0\end{document} k = 0 term would still be plagued by an indeterminacy of the form 0 × ∞. That indeterminacy is intimately linked to how the long-range contributions in the lattice sum (1) are handled and it is resolved only by an adequate treatment of those contributions, performed here via the splitting (2).
-
The electric neutrality of the simulation cell is often invoked as the reason for the exclusion of the \documentclass[12pt]{minimal}\begin{document}\ bm{ \rm k}=0\end{document} k = 0 term in (18), but neutrality alone is not sufficient because that \documentclass[12pt]{minimal}\begin{document}\bm{ \rm k}=0\end{document} k = 0 term would still be plagued by an indeterminacy of the form 0 × ∞. That indeterminacy is intimately linked to how the long-range contributions in the lattice sum (1) are handled and it is resolved only by an adequate treatment of those contributions, performed here via the splitting (2).
-
-
-
-
26
-
-
84899882888
-
-
One can show indeed that no term arises in (19), in the limit V → ∞, from the difference between the volume V and the crenelated volume made uof an integer number of cells.
-
One can show indeed that no term arises in (19), in the limit V → ∞, from the difference between the volume V and the crenelated volume made up of an integer number of cells.
-
-
-
-
29
-
-
0001569292
-
-
10.1080/08927029208049126
-
J. Kolafa and J. Perram, Mol. Sim. 9, 351 (1992). 10.1080/ 08927029208049126
-
(1992)
Mol. Sim.
, vol.9
, pp. 351
-
-
Kolafa, J.1
Perram, J.2
-
30
-
-
33744964773
-
-
10.1016/0378-4371(81)90031-5
-
S. de Leeuw and J. Perram, Physica A 107, 179 (1981). 10.1016/0378-4371(81)90031-5
-
(1981)
Physica A
, vol.107
, pp. 179
-
-
De Leeuw, S.1
Perram, J.2
|