-
1
-
-
55149114659
-
Finite element numerical simulation of three-dimensional seepage control for deep foundation pit dewatering
-
Luo Z.J., Zhang Y.Y., Wu Y.X. Finite element numerical simulation of three-dimensional seepage control for deep foundation pit dewatering. J. Hydrodyn. 2008, 20:596-602.
-
(2008)
J. Hydrodyn.
, vol.20
, pp. 596-602
-
-
Luo, Z.J.1
Zhang, Y.Y.2
Wu, Y.X.3
-
2
-
-
0032099284
-
The local minima-free condition of feedforward neural networks for outer-supervised learning
-
Huang D.S. The local minima-free condition of feedforward neural networks for outer-supervised learning. IEEE Trans. Syst. Man Cybern. B 1998, 28:477-480.
-
(1998)
IEEE Trans. Syst. Man Cybern. B
, vol.28
, pp. 477-480
-
-
Huang, D.S.1
-
3
-
-
0000759063
-
Radial basis probabilistic neural networks: model and application
-
Huang D.S. Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recognit. 1999, 13:1083-1101.
-
(1999)
Int. J. Pattern Recognit.
, vol.13
, pp. 1083-1101
-
-
Huang, D.S.1
-
4
-
-
18144390208
-
Estimating wall deflections in deep excavations using Bayesian neural networks
-
Chua C.G., Goh A.T.C. Estimating wall deflections in deep excavations using Bayesian neural networks. Tunn. Undergr. Sp. Technol. 2005, 20:400-409.
-
(2005)
Tunn. Undergr. Sp. Technol.
, vol.20
, pp. 400-409
-
-
Chua, C.G.1
Goh, A.T.C.2
-
5
-
-
1642618591
-
Neural-network-based regression model of ground surface settlement induced by deep excavation
-
Leu S.S., Lo H.C. Neural-network-based regression model of ground surface settlement induced by deep excavation. Autom. Constr. 2004, 13:279-289.
-
(2004)
Autom. Constr.
, vol.13
, pp. 279-289
-
-
Leu, S.S.1
Lo, H.C.2
-
6
-
-
57749092656
-
A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks
-
Huang D.S., Du J.X. A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 2008, 19:2099-2115.
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, pp. 2099-2115
-
-
Huang, D.S.1
Du, J.X.2
-
7
-
-
84866490627
-
A general CPL-AdS methodology for fixing dynamic parameters in dual environments
-
Huang D.S., Jiang W. A general CPL-AdS methodology for fixing dynamic parameters in dual environments. IEEE Trans. Syst. Man Cybern. B 2012, 42:1489-1500.
-
(2012)
IEEE Trans. Syst. Man Cybern. B
, vol.42
, pp. 1489-1500
-
-
Huang, D.S.1
Jiang, W.2
-
8
-
-
19344364336
-
Zeroing polynomials using modified constrained neural network approach
-
Huang D.S., Ip H.H.S., Law K.C.K., Chi Z. Zeroing polynomials using modified constrained neural network approach. IEEE Trans. Neural Netw. 2005, 16:721-732.
-
(2005)
IEEE Trans. Neural Netw.
, vol.16
, pp. 721-732
-
-
Huang, D.S.1
Ip, H.H.S.2
Law, K.C.K.3
Chi, Z.4
-
9
-
-
3042584634
-
A neural root finder of polynomials based on root moments
-
Huang D.S., Ip H.H.S., Chi Z.R. A neural root finder of polynomials based on root moments. Neural Comput. 2004, 16:1721-1762.
-
(2004)
Neural Comput.
, vol.16
, pp. 1721-1762
-
-
Huang, D.S.1
Ip, H.H.S.2
Chi, Z.R.3
-
10
-
-
2442503670
-
A constructive approach for finding arbitrary roots of polynomials by neural networks
-
Huang D.S. A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Trans. Neural Netw. 2004, 15:477-491.
-
(2004)
IEEE Trans. Neural Netw.
, vol.15
, pp. 477-491
-
-
Huang, D.S.1
-
11
-
-
0343586640
-
The united adaptive learning algorithm for the link weights and shape parameter in RBFN for pattern recognition
-
Huang D.S. The united adaptive learning algorithm for the link weights and shape parameter in RBFN for pattern recognition. Int. J. Pattern Recognit. 1997, 11:873-888.
-
(1997)
Int. J. Pattern Recognit.
, vol.11
, pp. 873-888
-
-
Huang, D.S.1
-
12
-
-
0141425890
-
Forecasting monthly streamflow dynamics in the western United States: a nonlinear dynamical approach
-
Sivakumar B. Forecasting monthly streamflow dynamics in the western United States: a nonlinear dynamical approach. Environ. Model. Softw. 2003, 18:721-728.
-
(2003)
Environ. Model. Softw.
, vol.18
, pp. 721-728
-
-
Sivakumar, B.1
-
13
-
-
79956368545
-
Multivariate nonlinear ensemble prediction of daily chaotic rainfall with climate inputs
-
Dhanya C.T., Kumar D.N. Multivariate nonlinear ensemble prediction of daily chaotic rainfall with climate inputs. J. Hydrol. 2011, 403:292-306.
-
(2011)
J. Hydrol.
, vol.403
, pp. 292-306
-
-
Dhanya, C.T.1
Kumar, D.N.2
-
15
-
-
78049509420
-
Translation invariant morphological time-lag added evolutionary forecasting method for stock market prediction
-
Araujo R.D. Translation invariant morphological time-lag added evolutionary forecasting method for stock market prediction. Expert Syst. Appl. 2011, 38:2835-2848.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 2835-2848
-
-
Araujo, R.D.1
-
16
-
-
84885835291
-
Fast and simple gradient-based optimization for semi-supervised support vector machines
-
Gieseke F., Airola A., Pahikkala T., Kramer O. Fast and simple gradient-based optimization for semi-supervised support vector machines. Neurocomputing 2014, 123:23-32.
-
(2014)
Neurocomputing
, vol.123
, pp. 23-32
-
-
Gieseke, F.1
Airola, A.2
Pahikkala, T.3
Kramer, O.4
-
17
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9:293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
18
-
-
0036825528
-
Weighted least squares support vector machines: robustness and sparse approximation
-
Suykens J.A.K., De Brabanter J., Lukas L., Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 2002, 48:85-105.
-
(2002)
Neurocomputing
, vol.48
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
20
-
-
82455199256
-
A comparative study of feature extraction methods for the diagnosis of Alzheimer[U+05F3]s disease using the ADNI database
-
Segovia F., Gorriz J.M., Ramirez J., Salas-Gonzalez D., Alvarez I., Lopez M., Chaves R. A comparative study of feature extraction methods for the diagnosis of Alzheimer[U+05F3]s disease using the ADNI database. Neurocomputing 2012, 75:64-71.
-
(2012)
Neurocomputing
, vol.75
, pp. 64-71
-
-
Segovia, F.1
Gorriz, J.M.2
Ramirez, J.3
Salas-Gonzalez, D.4
Alvarez, I.5
Lopez, M.6
Chaves, R.7
-
21
-
-
79952534864
-
Neural network method for determining embedding dimension of a time series
-
Maus A., Sprott J.C. Neural network method for determining embedding dimension of a time series. Commun. Nonlinear Sci. 2011, 16:3294-3302.
-
(2011)
Commun. Nonlinear Sci.
, vol.16
, pp. 3294-3302
-
-
Maus, A.1
Sprott, J.C.2
-
22
-
-
0001874436
-
Practical method for determining the minimum embedding dimension of a scalar time series
-
Cao L.Y. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 1997, 110:43-50.
-
(1997)
Physica D
, vol.110
, pp. 43-50
-
-
Cao, L.Y.1
-
23
-
-
54049100450
-
Regularized least squares fuzzy support vector regression for financial time series forecasting
-
Khemchandani R., Jayadeva, Chandra S. Regularized least squares fuzzy support vector regression for financial time series forecasting. Expert Syst. Appl. 2009, 36:132-138.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 132-138
-
-
Khemchandani, R.1
Jayadeva2
Chandra, S.3
-
24
-
-
77957308800
-
Modeling and prediction of Turkey[U+05F3]s electricity consumption using Support Vector Regression
-
Kavaklioglu K. Modeling and prediction of Turkey[U+05F3]s electricity consumption using Support Vector Regression. Appl. Energy 2011, 88:368-375.
-
(2011)
Appl. Energy
, vol.88
, pp. 368-375
-
-
Kavaklioglu, K.1
-
25
-
-
34147111649
-
Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
-
An S.J., Liu W.Q., Venkatesh S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognit. 2007, 40:2154-2162.
-
(2007)
Pattern Recognit.
, vol.40
, pp. 2154-2162
-
-
An, S.J.1
Liu, W.Q.2
Venkatesh, S.3
-
26
-
-
79956372247
-
A heuristic method for parameter selection in LS-SVM: application to time series prediction
-
Rubio G., Pomares H., Rojas I., Herrera L.J. A heuristic method for parameter selection in LS-SVM: application to time series prediction. Int. J. Forecast. 2011, 27:725-739.
-
(2011)
Int. J. Forecast.
, vol.27
, pp. 725-739
-
-
Rubio, G.1
Pomares, H.2
Rojas, I.3
Herrera, L.J.4
-
27
-
-
55749112476
-
Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
-
Hong W.C. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers. Manag. 2009, 50:105-117.
-
(2009)
Energy Convers. Manag.
, vol.50
, pp. 105-117
-
-
Hong, W.C.1
-
28
-
-
72049098529
-
Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity
-
Yang Z., Gu X.S., Liang X.Y., Ling L.C. Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity. Mater. Des. 2010, 31:1042-1049.
-
(2010)
Mater. Des.
, vol.31
, pp. 1042-1049
-
-
Yang, Z.1
Gu, X.S.2
Liang, X.Y.3
Ling, L.C.4
-
29
-
-
18544377981
-
Support vector machines with simulated annealing algorithms in electricity load forecasting
-
Pai P.F., Hong W.C. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers. Manag. 2005, 46:2669-2688.
-
(2005)
Energy Convers. Manag.
, vol.46
, pp. 2669-2688
-
-
Pai, P.F.1
Hong, W.C.2
-
30
-
-
0001023715
-
Application of support vector machines in financial time series forecasting
-
Tay F.E.H., Cao L.J. Application of support vector machines in financial time series forecasting. Omega - Int. J. Manag. Sci. 2001, 29:309-317.
-
(2001)
Omega - Int. J. Manag. Sci.
, vol.29
, pp. 309-317
-
-
Tay, F.E.H.1
Cao, L.J.2
|