-
2
-
-
0029182228
-
Active shape models-their training and application
-
T. Cootes, C. Taylor, D. Cooper, and J. Graham Active shape models-their training and application Comput. Vision Image Underst. 61 1 1995 38 59
-
(1995)
Comput. Vision Image Underst.
, vol.61
, Issue.1
, pp. 38-59
-
-
Cootes, T.1
Taylor, C.2
Cooper, D.3
Graham, J.4
-
4
-
-
45549088404
-
Automatic feature localisation with constrained local models
-
D. Cristinacce, and T. Cootes Automatic feature localisation with constrained local models Pattern Recognit. 41 10 2008 3054 3067
-
(2008)
Pattern Recognit.
, vol.41
, Issue.10
, pp. 3054-3067
-
-
Cristinacce, D.1
Cootes, T.2
-
5
-
-
33749264957
-
Real-time video abstraction
-
DOI 10.1145/1141911.1142018, ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH 2006
-
H. Winnemöller, S.C. Olsen, and B. Gooch Real-time video abstraction ACM Trans. Graph. 25 3 2006 1221 1226 (Pubitemid 44481088)
-
(2006)
ACM Transactions on Graphics
, vol.25
, Issue.3
, pp. 1221-1226
-
-
Winnemoller, H.1
Olsen, S.C.2
Gooch, B.3
-
6
-
-
84867706260
-
Exploiting perception for face analysis: Image abstraction for head pose estimation
-
A. Puri, B. Lall, Exploiting perception for face analysis: image abstraction for head pose estimation, in: computer vision ECCV 2012, Workshops and Demonstrations, Lecture Notes in Computer Science, vol. 7584, 2012, pp. 319-329.
-
(2012)
Computer Vision ECCV 2012, Workshops and Demonstrations, Lecture Notes in Computer Science
, vol.7584
, pp. 319-329
-
-
Puri, A.1
Lall, B.2
-
7
-
-
84881138397
-
Head pose estimation based on image abstraction for multiclass classification
-
B. Han, Y. Chae, Y.H. Seo, H. Yang, Head Pose Estimation Based on Image Abstraction for Multiclass Classification, in: Information Technology Convergence, Lecture Notes in Electrical Engineering, vol. 253, 2013, pp. 933-940.
-
(2013)
Information Technology Convergence, Lecture Notes in Electrical Engineering
, vol.253
, pp. 933-940
-
-
Han, B.1
Chae, Y.2
Seo, Y.H.3
Yang, H.4
-
8
-
-
84877632511
-
GrabCut: Interactive foreground extraction using iterated graph cuts
-
C. Rother, V. Kolmogorov, and A. Blake GrabCut: interactive foreground extraction using iterated graph cuts ACM Trans. Graph. 23 3 2004 309 314
-
(2004)
ACM Trans. Graph.
, vol.23
, Issue.3
, pp. 309-314
-
-
Rother, C.1
Kolmogorov, V.2
Blake, A.3
-
11
-
-
0034844730
-
Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images
-
Y. Boykov, M.P. Jolly, Interactive graph cuts for optimal boundary amp; region segmentation of objects in N-D images, in: Proceedings of Eighth IEEE International Conference on Computer Vision ICCV 2001, vol. 1, 2001, pp. 105-112. (Pubitemid 32794944)
-
(2001)
Proceedings of the IEEE International Conference on Computer Vision
, vol.1
, pp. 105-112
-
-
Boykov, Y.Y.1
Jolly, M.-P.2
-
16
-
-
76449115179
-
Multi-pie
-
R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker Multi-PIE Image Vision Comput. 28 5 2010 807 813
-
(2010)
Image Vision Comput.
, vol.28
, Issue.5
, pp. 807-813
-
-
Gross, R.1
Matthews, I.2
Cohn, J.3
Kanade, T.4
Baker, S.5
-
17
-
-
33746099118
-
Estimating face orientation from robust detection of salient facial structures
-
N. Gourier, D. Hall, J.L. Crowley, Estimating face orientation from robust detection of salient facial structures, in: FG Net Workshop on Visual Observation of Deictic Gestures, 2004, pp. 1-9.
-
(2004)
FG Net Workshop on Visual Observation of Deictic Gestures
, pp. 1-9
-
-
Gourier, N.1
Hall, D.2
Crowley, J.L.3
-
19
-
-
38149090988
-
Enhanced local texture feature sets for face recognition under difficult lighting conditions
-
S. Zhou, W. Zhao, X. Tang, S. Gong (Eds.)
-
X. Tan, B. Triggs, Enhanced local texture feature sets for face recognition under difficult lighting conditions, in: S. Zhou, W. Zhao, X. Tang, S. Gong (Eds.), Analysis and Modeling of Faces and Gestures, Lecture Notes in Computer Science, vol. 4778, 2007, pp. 168-182.
-
(2007)
Analysis and Modeling of Faces and Gestures, Lecture Notes in Computer Science
, vol.4778
, pp. 168-182
-
-
Tan, X.1
Triggs, B.2
|