메뉴 건너뛰기




Volumn 19, Issue , 2014, Pages 430-437

Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine

Author keywords

Basic oxygen furnace; Endpoint carbon content; Endpoint temperature; Evolutionary membrane algorithm; Extreme learning machine; Prediction model; Soft measurement

Indexed keywords

BASIC OXYGEN CONVERTERS; CARBON; COMPUTER SIMULATION; EVOLUTIONARY ALGORITHMS; FORECASTING; GAUSSIAN NOISE (ELECTRONIC); KNOWLEDGE ACQUISITION; LADLE METALLURGY; LEARNING SYSTEMS; MATHEMATICAL MODELS; STEEL FOUNDRY PRACTICE; STEELMAKING;

EID: 84899437762     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2013.09.012     Document Type: Article
Times cited : (60)

References (46)
  • 2
    • 80052036080 scopus 로고    scopus 로고
    • Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine
    • M. Han, and Y. Zhao Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine Expert Systems with Applications 38 12 2011 14786 14798
    • (2011) Expert Systems with Applications , vol.38 , Issue.12 , pp. 14786-14798
    • Han, M.1    Zhao, Y.2
  • 3
    • 77953957781 scopus 로고    scopus 로고
    • Applying input variables selection technique on input weighted support vector machine modeling for BOF endpoint prediction
    • X. Wang, M. Han, and J. Wang Applying input variables selection technique on input weighted support vector machine modeling for BOF endpoint prediction Engineering Applications of Artificial Intelligence 23 6 2010 1012 1018
    • (2010) Engineering Applications of Artificial Intelligence , vol.23 , Issue.6 , pp. 1012-1018
    • Wang, X.1    Han, M.2    Wang, J.3
  • 5
    • 61449125055 scopus 로고    scopus 로고
    • Genetic algorithm-based multicriteria optimization of ironmaking in the blast furnace
    • F. Pettersson, H. Saxen, and K. Deb Genetic algorithm-based multicriteria optimization of ironmaking in the blast furnace Materials and Manufacturing Processes 24 3 2009 343 349
    • (2009) Materials and Manufacturing Processes , vol.24 , Issue.3 , pp. 343-349
    • Pettersson, F.1    Saxen, H.2    Deb, K.3
  • 6
    • 34249884281 scopus 로고    scopus 로고
    • Evolving nonlinear time-series models of the hot metal silicon content in the blast furnace
    • DOI 10.1080/10426910701322278, PII 779142031
    • H. Saxén, F. Pettersson, and K. Gunturu Evolving nonlinear time-series models of the hot metal silicon content in the blast furnace Materials and Manufacturing Processes 22 5 2007 577 584 (Pubitemid 46863321)
    • (2007) Materials and Manufacturing Processes , vol.22 , Issue.5 , pp. 577-584
    • Saxen, H.1    Pettersson, F.2    Gunturu, K.3
  • 7
    • 33750963282 scopus 로고    scopus 로고
    • A genetic algorithms based multi-objective neural net applied to noisy blast furnace data
    • DOI 10.1016/j.asoc.2005.09.001, PII S1568494605000803
    • F. Pettersson, N. Chakraborti, and H. Saxén A genetic algorithms based multi-objective neural net applied to noisy blast furnace data Applied Soft Computing 7 1 2007 387 397 (Pubitemid 44739441)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.1 , pp. 387-397
    • Pettersson, F.1    Chakraborti, N.2    Saxen, H.3
  • 11
    • 0014856237 scopus 로고
    • The use of bayesian inference in the design of an endpoint control system for the basic oxygen steel furnace
    • R. Kornblum, and M. Tribus The use of bayesian inference in the design of an endpoint control system for the basic oxygen steel furnace IEEE Transactions on Systems Science and Cybernetics 6 4 1970 339 348
    • (1970) IEEE Transactions on Systems Science and Cybernetics , vol.6 , Issue.4 , pp. 339-348
    • Kornblum, R.1    Tribus, M.2
  • 12
    • 78649609611 scopus 로고    scopus 로고
    • Memetic algorithms-based neural network learning for basic oxygen furnace endpoint prediction
    • P. Chen, and Y.Z. Lu Memetic algorithms-based neural network learning for basic oxygen furnace endpoint prediction Journal of Zhejiang University Science A 11 11 2010 841 848
    • (2010) Journal of Zhejiang University Science A , vol.11 , Issue.11 , pp. 841-848
    • Chen, P.1    Lu, Y.Z.2
  • 15
    • 29144456822 scopus 로고    scopus 로고
    • Neural modeling helps the BOS process to achieve aimed end-point conditions in liquid steel
    • DOI 10.1016/j.engappai.2005.06.002, PII S0952197605000783
    • A. Fileti, T. Pacianotto, and A.P. Cunha Neural modeling helps the BOS process to achieve aimed end-point conditions in liquid steel Engineering Applications of Artificial Intelligence 19 1 2006 9 17 (Pubitemid 41795691)
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , Issue.1 , pp. 9-17
    • Fileti, A.M.F.1    Pacianotto, T.A.2    Cunha, A.P.3
  • 16
    • 77952729120 scopus 로고    scopus 로고
    • Feed forward neural network for prediction of end blow oxygen in LD converter steel making
    • N. Rajesh, M.R. Khare, and S.K. Pabi Feed forward neural network for prediction of end blow oxygen in LD converter steel making Materials Research 13 1 2010 15 19
    • (2010) Materials Research , vol.13 , Issue.1 , pp. 15-19
    • Rajesh, N.1    Khare, M.R.2    Pabi, S.K.3
  • 17
    • 35348940140 scopus 로고    scopus 로고
    • Reviving traditional blast furnace models with new mathematical approach
    • DOI 10.1179/174328107X203796
    • F. De Medeiros, S. Noblat, and A. Fileti Reviving traditional blast furnace models with new mathematical approach Ironmaking & Steelmaking 34 5 2007 410 414 (Pubitemid 47609255)
    • (2007) Ironmaking and Steelmaking , vol.34 , Issue.5 , pp. 410-414
    • De Medeiros, F.T.P.1    Noblat, S.J.X.2    Fileti, A.M.F.3
  • 18
    • 79951772118 scopus 로고    scopus 로고
    • A model of basic oxygen furnace (BOF) end-point prediction based on spectrum information of the furnace flame with support vector machine (SVM)
    • L.F. Xu, W. Li, M. Zhang, S.X. Xu, and J. Li A model of basic oxygen furnace (BOF) end-point prediction based on spectrum information of the furnace flame with support vector machine (SVM) Optik-International Journal for Light and Electron Optics 122 7 2011 594 598
    • (2011) Optik-International Journal for Light and Electron Optics , vol.122 , Issue.7 , pp. 594-598
    • Xu, L.F.1    Li, W.2    Zhang, M.3    Xu, S.X.4    Li, J.5
  • 19
    • 78650744707 scopus 로고    scopus 로고
    • A new spectral analysis technique used in converter steelmaking BOF endpoint control
    • L.F. Xu, W.S. Li, S.X. Xu, J. Li, and Y.Q. Wang A new spectral analysis technique used in converter steelmaking BOF endpoint control Advanced Materials Research 139 2010 689 692
    • (2010) Advanced Materials Research , vol.139 , pp. 689-692
    • Xu, L.F.1    Li, W.S.2    Xu, S.X.3    Li, J.4    Wang, Y.Q.5
  • 20
    • 61449083765 scopus 로고    scopus 로고
    • Converter end-point prediction model using spectrum image analysis and improved neural network algorithm
    • H.Y. Wen, Q. Zhao, Y.R. Chen, M.C. Zhou, M. Zhang, and L.F. Xu Converter end-point prediction model using spectrum image analysis and improved neural network algorithm Optica Applicata 38 4 2008 693 704
    • (2008) Optica Applicata , vol.38 , Issue.4 , pp. 693-704
    • Wen, H.Y.1    Zhao, Q.2    Chen, Y.R.3    Zhou, M.C.4    Zhang, M.5    Xu, L.F.6
  • 22
    • 0036505997 scopus 로고    scopus 로고
    • Model-based estimation of molten metal analysis in the LD converter: Experiments at SSAB Tunnplat AB in Lulea
    • DOI 10.1109/28.993180, PII S0093999402026853
    • W. Birk, A. Johansson, A. Medvedev, and R. Johansson Model-based estimation of molten metal analysis in the LD converter: experiments at SSAB Tunnplat AB in Lulea IEEE Transactions on Industry Applications 38 2 2002 565 570 (Pubitemid 34491538)
    • (2002) IEEE Transactions on Industry Applications , vol.38 , Issue.2 , pp. 565-570
    • Birk, W.1    Johansson, A.2    Medvedev, A.3    Johansson, R.4
  • 25
    • 84868348862 scopus 로고    scopus 로고
    • Editorial of the special issue: Online fuzzy machine learning and data mining
    • A. Bouchachia, E. Lughofer, and D. Sanchez Editorial of the special issue: online fuzzy machine learning and data mining Information Sciences 220 2013 1 4
    • (2013) Information Sciences , vol.220 , pp. 1-4
    • Bouchachia, A.1    Lughofer, E.2    Sanchez, D.3
  • 28
    • 79956002225 scopus 로고    scopus 로고
    • Adaptive incremental learning in neural networks
    • A. Bouchachia, and N. Nedjah Adaptive incremental learning in neural networks Neurocomputing 74 11 2011 1783 1784
    • (2011) Neurocomputing , vol.74 , Issue.11 , pp. 1783-1784
    • Bouchachia, A.1    Nedjah, N.2
  • 31
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.B. Huang, Q.Y. Zhu, and C.K. Siew Extreme learning machine: theory and applications Neurocomputing 70 1 2006 489 501
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 32
    • 84864758579 scopus 로고    scopus 로고
    • Enhanced combination modeling method for combustion efficiency in coal-fired boilers
    • G. Li, P. Niu, C. Liu, and W. Zhang Enhanced combination modeling method for combustion efficiency in coal-fired boilers Applied Soft Computing 12 10 2012 3123 3140
    • (2012) Applied Soft Computing , vol.12 , Issue.10 , pp. 3123-3140
    • Li, G.1    Niu, P.2    Liu, C.3    Zhang, W.4
  • 37
  • 40
    • 58549103087 scopus 로고    scopus 로고
    • No-reference image quality assessment using modified extreme learning machine classifier
    • S. Suresh, R. Venkatesh Babu, and H. Kim No-reference image quality assessment using modified extreme learning machine classifier Applied Soft Computing 9 2 2009 541 552
    • (2009) Applied Soft Computing , vol.9 , Issue.2 , pp. 541-552
    • Suresh, S.1    Venkatesh Babu, R.2    Kim, H.3
  • 42
    • 77957919731 scopus 로고    scopus 로고
    • Incremental modeling with rough and fine tuning method
    • S.S. Kim, and K.C. Kwak Incremental modeling with rough and fine tuning method Applied Soft Computing 11 1 2011 585 591
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 585-591
    • Kim, S.S.1    Kwak, K.C.2
  • 44
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • DOI 10.1109/TNN.2006.875977
    • G.B. Huang, L. Chen, and C.K. Siew Universal approximation using incremental constructive feedforward networks with random hidden nodes IEEE Transactions on Neural Networks 17 4 2006 879 892 (Pubitemid 44194149)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 45
    • 84655167161 scopus 로고    scopus 로고
    • Weighted principal component extraction with genetic algorithms
    • N. Liu, and H. Wang Weighted principal component extraction with genetic algorithms Applied Soft Computing 12 2 2012 961 974
    • (2012) Applied Soft Computing , vol.12 , Issue.2 , pp. 961-974
    • Liu, N.1    Wang, H.2
  • 46
    • 22844440904 scopus 로고    scopus 로고
    • Evolutionary extreme learning machine
    • DOI 10.1016/j.patcog.2005.03.028, PII S0031320305001809
    • Q.Y. Zhu, A.K. Qin, P.N. Suganthan, and G.B. Huang Evolutionary extreme learning machine Pattern Recognition 38 10 2005 1759 1763 (Pubitemid 41037107)
    • (2005) Pattern Recognition , vol.38 , Issue.10 , pp. 1759-1763
    • Zhu, Q.-Y.1    Qin, A.K.2    Suganthan, P.N.3    Huang, G.-B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.