-
1
-
-
84899440544
-
-
Galaxy Zoo, 2007, http://zool.galaxyzoo.org/.
-
(2007)
-
-
-
2
-
-
0029210635
-
Learning to act using real-time dynamic programming
-
A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic programming. Artificial Intelligence, 72(1): 81-138, 1995.
-
(1995)
Artificial Intelligence
, vol.72
, Issue.1
, pp. 81-138
-
-
Barto, A.1
Bradtke, S.2
Singh, S.3
-
3
-
-
80053415687
-
Value of information lattice: Exploiting probabilistic independence for effective feature subset acquisition
-
M. Bilgic and L. Getoor. Value of information lattice: Exploiting probabilistic independence for effective feature subset acquisition. J AIR, 2011.
-
(2011)
J AIR
-
-
Bilgic, M.1
Getoor, L.2
-
4
-
-
0013188486
-
A Bayesian approach to learning Bayesian networks with local structure
-
D. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian networks with local structure. In UAI, pages 80-89, 1997.
-
(1997)
UAI
, pp. 80-89
-
-
Chickering, D.1
Heckerman, D.2
Meek, C.3
-
5
-
-
0005012692
-
Myopic value of information in influence diagrams
-
S. Dittmer and F. Jensen. Myopic value of information in influence diagrams. In UAI, pages 142-149, 1997.
-
(1997)
UAI
, pp. 142-149
-
-
Dittmer, S.1
Jensen, F.2
-
6
-
-
0015860787
-
Decision analysis as the basis for computer-aided management of acute renal failure
-
G. Gorry, J. Kassirer, A. Essig, and W. Schwartz. Decision analysis as the basis for computer-aided management of acute renal failure. AIM, 1973.
-
(1973)
AIM
-
-
Gorry, G.1
Kassirer, J.2
Essig, A.3
Schwartz, W.4
-
7
-
-
78751681045
-
Greedy algorithms for sequential sensing decisions
-
H. Hajishirzi, A. Shirazi, J. Choi, and E. Amir. Greedy algorithms for sequential sensing decisions. In IJCAI, pages 1908-1915, 2009.
-
(2009)
IJCAI
, pp. 1908-1915
-
-
Hajishirzi, H.1
Shirazi, A.2
Choi, J.3
Amir, E.4
-
8
-
-
0035250761
-
Monitoring and control of anytime algorithms: A dynamic programming approach
-
E. Hansen and S. Zilberstein. Monitoring and control of anytime algorithms: A dynamic programming approach. Artificial Intelligence, 126(1): 139-157, 2001.
-
(2001)
Artificial Intelligence
, vol.126
, Issue.1
, pp. 139-157
-
-
Hansen, E.1
Zilberstein, S.2
-
9
-
-
0027556865
-
An approximate nonmyopic computation for value of information
-
D. Heckerman, E. Horvitz, and B. Middleton. An approximate nonmyopic computation for value of information. TPAMI, 15(3): 292-298, 1993.
-
(1993)
TPAMI
, vol.15
, Issue.3
, pp. 292-298
-
-
Heckerman, D.1
Horvitz, E.2
Middleton, B.3
-
12
-
-
0032073263
-
Planning and acting in partially observable stochastic domains
-
L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1): 99-134, 1998.
-
(1998)
Artificial Intelligence
, vol.101
, Issue.1
, pp. 99-134
-
-
Kaelbling, L.1
Littman, M.2
Cassandra, A.3
-
13
-
-
84899442104
-
Combining human and machine intelligence in a large-scale crowdsourcing system
-
E. Kamar, S. Hacker, and E. Horvitz. Combining human and machine intelligence in a large-scale crowdsourcing system. In AAMAS, 2012.
-
(2012)
AAMAS
-
-
Kamar, E.1
Hacker, S.2
Horvitz, E.3
-
14
-
-
84880649215
-
A sparse sampling algorithm for near-optimal planning in large Markov decision processes
-
M. Kearns, Y. Mansour, and A. Ng. A sparse sampling algorithm for near-optimal planning in large markov decision processes. In IJCAI, 1999.
-
(1999)
IJCAI
-
-
Kearns, M.1
Mansour, Y.2
Ng, A.3
-
15
-
-
33750293964
-
Bandit based Monte-Carlo planning
-
L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. ECML, pages 282-293, 2006.
-
(2006)
ECML
, pp. 282-293
-
-
Kocsis, L.1
Szepesvári, C.2
-
16
-
-
85167421690
-
Near-optimal observation selection using submodular functions
-
A. Krause and C. Guestrin. Near-optimal observation selection using submodular functions. In AAAI, 2007.
-
(2007)
AAAI
-
-
Krause, A.1
Guestrin, C.2
-
17
-
-
52949134103
-
Efficient non-myopic value-of-information computation for influence diagrams
-
W. Liao and Q. Ji. Efficient non-myopic value-of-information computation for influence diagrams. International Journal of Approximate Reasoning, 49(2): 436-450, 2008.
-
(2008)
International Journal of Approximate Reasoning
, vol.49
, Issue.2
, pp. 436-450
-
-
Liao, W.1
Ji, Q.2
-
20
-
-
84899414411
-
When to stop? That is the question
-
S. Reches, M. Kalech, and R. Stern. When to stop? that is the question. In AAAI, 2011.
-
(2011)
AAAI
-
-
Reches, S.1
Kalech, M.2
Stern, R.3
-
21
-
-
65449144451
-
Get another label? Improving data quality and data mining using multiple, noisy labelers
-
V. Sheng, F. Provost, and P. Ipeirotis. Get another label? Improving data quality and data mining using multiple, noisy labelers. In ACM SIGKDD, 2008.
-
(2008)
ACM SIGKDD
-
-
Sheng, V.1
Provost, F.2
Ipeirotis, P.3
-
23
-
-
85167446337
-
Multi-task active learning with output constraints
-
Y. Zhang. Multi-task active learning with output constraints. In AAAI, 2010.
-
(2010)
AAAI
-
-
Zhang, Y.1
|