메뉴 건너뛰기




Volumn , Issue , 2006, Pages 86-120

Pattern comparison in data mining: A survey

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84899164346     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-59904-271-8.ch004     Document Type: Chapter
Times cited : (1)

References (57)
  • 6
    • 23144437564 scopus 로고    scopus 로고
    • Monitoring the results of the KDD process: An overview of pattern evolution
    • In J. Meij (Ed.), The Hague, The Netherlands: STT
    • Baron, S., & Spiliopoulou, M. (2002). Monitoring the results of the KDD process: An overview of pattern evolution, In J. Meij (Ed.), Dealing with the data flood: mining data, text and multimedia (pp. 845-863). The Hague, The Netherlands: STT.
    • (2002) Dealing With the Data Flood: Mining Data, Text and Multimedia , pp. 845-863
    • Baron, S.1    Spiliopoulou, M.2
  • 7
    • 23144438290 scopus 로고    scopus 로고
    • Monitoring the evolution of Web usage patterns
    • In B. Berendt, A. Hotho, D. Mladenic, M. Someren, M. Spiliopoulou, & G. Stumme (Eds.), Cavtat-Dubrovnik, Croatia: Springer
    • Baron, S., & Spiliopoulou, M. (2003). Monitoring the evolution of Web usage patterns. In B. Berendt, A. Hotho, D. Mladenic, M. Someren, M. Spiliopoulou, & G. Stumme (Eds.), Proceedings of Web Mining: From Web to Semantic Web, 1st European Web Mining Forum (pp. 181-200). Cavtat-Dubrovnik, Croatia: Springer.
    • (2003) Proceedings of Web Mining: From Web to Semantic Web, 1st European Web Mining Forum , pp. 181-200
    • Baron, S.1    Spiliopoulou, M.2
  • 11
    • 84899216745 scopus 로고    scopus 로고
    • Pattern management: Practice and challenges
    • In J. Darmont & O. Boussaïd (Eds.), Hershey, PA: Idea Group Publishing
    • Catania, B., & Maddalena, A. (2006). Pattern management: Practice and challenges. In J. Darmont & O. Boussaïd (Eds.), Processing and managing complex data for decision support (pp. 280-317). Hershey, PA: Idea Group Publishing.
    • (2006) Processing and Managing Complex Data For Decision Support , pp. 280-317
    • Catania, B.1    Maddalena, A.2
  • 20
    • 0002433547 scopus 로고    scopus 로고
    • From data mining to knowledge discovery: An overview
    • In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Newport Beach, CA: AAAI/MIT Press
    • Fayyad, U.M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery: An overview. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 1-34). Newport Beach, CA: AAAI/MIT Press.
    • (1996) Advances In Knowledge Discovery and Data Mining , pp. 1-34
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 22
    • 0024748699 scopus 로고
    • Faster scaling algorithms for network problems
    • Gabow, H.N., & Tarjan, R.E. (1989). Faster scaling algorithms for network problems. SIAM Journal of Computation, 18, 1013-1036.
    • (1989) SIAM Journal of Computation , vol.18 , pp. 1013-1036
    • Gabow, H.N.1    Tarjan, R.E.2
  • 25
    • 33745786738 scopus 로고    scopus 로고
    • Mining and monitoring evolving data
    • In J. Abello, P.M. Pardalos, & M.G.C. Resende (Eds.), Norwell, MA: Kluwer Academic
    • Ganti, V., & Ramakrishnan, R. (2002). Mining and monitoring evolving data. In J. Abello, P.M. Pardalos, & M.G.C. Resende (Eds.), Handbook of massive data sets (pp. 593-642.). Norwell, MA: Kluwer Academic.
    • (2002) Handbook of Massive Data Sets , pp. 593-642
    • Ganti, V.1    Ramakrishnan, R.2
  • 30
    • 0002719797 scopus 로고
    • Hungarian method for the assignment problem
    • Kuhn, H. (1955). Hungarian method for the assignment problem. Naval Research Quarterly, 2, 83-97.
    • (1955) Naval Research Quarterly , vol.2 , pp. 83-97
    • Kuhn, H.1
  • 33
    • 34548714163 scopus 로고    scopus 로고
    • Association-based similarity testing and its applications
    • Li, T., Ogihara, M., & Zhu, S. (2003). Association-based similarity testing and its applications. Intelligent Data Analysis, 7, 209-232.
    • (2003) Intelligent Data Analysis , vol.7 , pp. 209-232
    • Li, T.1    Ogihara, M.2    Zhu, S.3
  • 35
    • 78149338936 scopus 로고    scopus 로고
    • Analyzing the interestingness of association rules from the temporal dimension
    • In N. Cercone, T.Y. Lin, & X. Wu (Eds.), San Jose, CA: IEEE Computer Society
    • Liu, B., Ma, Y., & Lee, R. (2001). Analyzing the interestingness of association rules from the temporal dimension. In N. Cercone, T.Y. Lin, & X. Wu (Eds.), In Proceedings of the 2001 IEEE International Conference on Data Mining (pp. 377-384). San Jose, CA: IEEE Computer Society.
    • (2001) Proceedings of the 2001 IEEE International Conference On Data Mining , pp. 377-384
    • Liu, B.1    Ma, Y.2    Lee, R.3
  • 36
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815-840.
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 37
    • 84950459261 scopus 로고
    • Tree-structured classification via generalized discriminant analysis (with discussion)
    • Loh, W.-Y., & Vanichsetakul, N. (1988). Tree-structured classification via generalized discriminant analysis (with discussion). Journal of the American Statistical Association, 83, 715-728.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 715-728
    • Loh, W.-Y.1    Vanichsetakul, N.2
  • 38
    • 0003918928 scopus 로고    scopus 로고
    • Retrieved January 30, 2006, from
    • Lyman, P., & Varian, H.R. (2003). How much information. Retrieved January 30, 2006, from http://www.sims.berkeley.edu/research/projects/how-much-info.
    • (2003) How Much Information
    • Lyman, P.1    Varian, H.R.2
  • 41
    • 0034826101 scopus 로고    scopus 로고
    • An experimental comparison of model-based clustering methods
    • Meila, M., & Heckerman, D. (2001). An experimental comparison of model-based clustering methods. Machine Learning, 42, 9-29.
    • (2001) Machine Learning , vol.42 , pp. 9-29
    • Meila, M.1    Heckerman, D.2
  • 46
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 50
    • 0002663969 scopus 로고    scopus 로고
    • Sampling large databases for association rules
    • In T.M. Vijayaraman, A.P. Buchmann, C. Mohan, & N.L. Sarda (Eds.), Bombay, India: Morgan Kaufmann
    • Toivonen, H. (1996). Sampling large databases for association rules. In T.M. Vijayaraman, A.P. Buchmann, C. Mohan, & N.L. Sarda (Eds.), In Proceedings of 1996 International Conference on Very Large Data Bases (pp. 134-145). Bombay, India: Morgan Kaufmann.
    • (1996) Proceedings of 1996 International Conference On Very Large Data Bases , pp. 134-145
    • Toivonen, H.1
  • 52
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • Utgoff, P.E. (1989). Incremental induction of decision trees. Machine Learning, 4, 161-186.
    • (1989) Machine Learning , vol.4 , pp. 161-186
    • Utgoff, P.E.1
  • 53
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • Utgoff, P.E., Berkman, N.C., & Clouse, J.A. (1997). Decision tree induction based on efficient tree restructuring. Machine Learning, 29, 5-44.
    • (1997) Machine Learning , vol.29 , pp. 5-44
    • Utgoff, P.E.1    Berkman, N.C.2    Clouse, J.A.3
  • 56
    • 17044438212 scopus 로고    scopus 로고
    • Efficient algorithms for mining closed itemsets and their lattice structure
    • Zaki, M., & Hsiao, C.-J. (2005). Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Transactions on Knowledge and Data Engineering, 17, 462-478.
    • (2005) IEEE Transactions On Knowledge and Data Engineering , vol.17 , pp. 462-478
    • Zaki, M.1    Hsiao, C.-J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.