메뉴 건너뛰기




Volumn 237, Issue , 2014, Pages 605-612

Global stability of impulsive fractional differential equations

Author keywords

Comparison principle; Global stability; Impulsive fractional differential equations; Lyapunov method

Indexed keywords

DIFFERENTIAL EQUATIONS; LYAPUNOV METHODS;

EID: 84899095856     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2014.03.067     Document Type: Article
Times cited : (58)

References (19)
  • 3
    • 84872139768 scopus 로고    scopus 로고
    • On almost periodic processes in uncertain impulsive delay models of price fluctuations in commodity markets
    • G.Tr. Stamov, and A.G. Stamov On almost periodic processes in uncertain impulsive delay models of price fluctuations in commodity markets Appl. Math. Comput. 219 2013 5376 5383
    • (2013) Appl. Math. Comput. , vol.219 , pp. 5376-5383
    • Stamov, G.Tr.1    Stamov, A.G.2
  • 5
    • 77949264980 scopus 로고    scopus 로고
    • A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
    • R.P. Agarwal, M. Benchohra, and S. Hamani A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions Acta Appl. Math. 109 2010 973 1033
    • (2010) Acta Appl. Math. , vol.109 , pp. 973-1033
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 10
    • 84877676208 scopus 로고    scopus 로고
    • Lipschitz stability criteria for functional differential systems of fractional order
    • 11pp
    • I. Stamova, and G. Stamov Lipschitz stability criteria for functional differential systems of fractional order J. Math. Phys. 54 2013 043502 11pp
    • (2013) J. Math. Phys. , vol.54 , pp. 043502
    • Stamova, I.1    Stamov, G.2
  • 11
    • 79958084387 scopus 로고    scopus 로고
    • Existence of solutions for impulsive anti-periodic boundary value problems of fractional order
    • B. Ahmad, and J.J. Nieto Existence of solutions for impulsive anti-periodic boundary value problems of fractional order Taiwanese J. Math. 15 2011 981 993
    • (2011) Taiwanese J. Math. , vol.15 , pp. 981-993
    • Ahmad, B.1    Nieto, J.J.2
  • 12
    • 84855204096 scopus 로고    scopus 로고
    • Impulsive fractional differential equations with nonlinear boundary conditions
    • J. Cao, and H. Chen Impulsive fractional differential equations with nonlinear boundary conditions Math. Comput. Modell. 55 2012 303 311
    • (2012) Math. Comput. Modell. , vol.55 , pp. 303-311
    • Cao, J.1    Chen, H.2
  • 13
    • 84856291615 scopus 로고    scopus 로고
    • On the concept and existence of solution for impulsive fractional differential equations
    • M. Feckan, Y. Zhou, and J.R. Wang On the concept and existence of solution for impulsive fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 17 2012 3050 3060
    • (2012) Commun. Nonlinear Sci. Numer. Simul. , vol.17 , pp. 3050-3060
    • Feckan, M.1    Zhou, Y.2    Wang, J.R.3
  • 14
    • 84884861596 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions for impulsive fractional differential equations
    • M. Rehman, and P. Eloe Existence and uniqueness of solutions for impulsive fractional differential equations Appl. Math. Comput. 224 2013 422 431
    • (2013) Appl. Math. Comput. , vol.224 , pp. 422-431
    • Rehman, M.1    Eloe, P.2
  • 15
    • 84885182412 scopus 로고    scopus 로고
    • Stability analysis of impulsive functional systems of fractional order
    • I.M. Stamova, and G.T. Stamov Stability analysis of impulsive functional systems of fractional order Commun. Nonlinear Sci. Numer. Simul. 19 2014 702 709
    • (2014) Commun. Nonlinear Sci. Numer. Simul. , vol.19 , pp. 702-709
    • Stamova, I.M.1    Stamov, G.T.2
  • 18
    • 53949111458 scopus 로고    scopus 로고
    • Basic theory of fractional differential equations
    • V. Lakshmikantham, and A.S. Vatsala Basic theory of fractional differential equations Nonlinear Anal. 69 2008 2677 2682
    • (2008) Nonlinear Anal. , vol.69 , pp. 2677-2682
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 19
    • 76449092011 scopus 로고    scopus 로고
    • Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability
    • Y. Li, Y.Q. Chen, and I. Podlubny Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability Comput. Math. Appl. 59 2010 1810 1821
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1810-1821
    • Li, Y.1    Chen, Y.Q.2    Podlubny, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.