-
1
-
-
34547979771
-
Uncovering shared structures in multiclass classification
-
Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering Shared Structures in Multiclass Classification. In Proc. 24th ICML, pages 17-24, 2007.
-
(2007)
Proc. 24th ICML
, pp. 17-24
-
-
Amit, Y.1
Fink, M.2
Srebro, N.3
Ullman, S.4
-
2
-
-
55149088329
-
Convexmulti-task feature learning
-
A. Argyriou, T. Evgeniou, andM. Pontil. ConvexMulti-Task Feature Learning. Mach. Learn., 73(3):243-272, 2008.
-
(2008)
Mach. Learn.
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
3
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci., 2(1):183-202, 2009.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
4
-
-
0003878614
-
-
MPS-SIAMSeries on Optimization. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania
-
A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAMSeries on Optimization. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 2001.
-
(2001)
Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications
-
-
Ben-Tal, A.1
Nemirovski, A.2
-
5
-
-
0034853839
-
A rank minimization heuristic with application to minimum order system approximation
-
M. Fazel, H. Hindi, and S. P. Boyd. A Rank Minimization Heuristic with Application to Minimum Order System Approximation. In Proc. 2001 ACC, pages 4734-4739, 2001.
-
(2001)
Proc. 2001 ACC
, pp. 4734-4739
-
-
Fazel, M.1
Hindi, H.2
Boyd, S.P.3
-
6
-
-
79951886985
-
Recovering low-rank matrices from few coefficients in any basis
-
D. Gross. Recovering Low-Rank Matrices from Few Coefficients in Any Basis. IEEE Trans. Inf. Theory, 57(3):1548-1566, 2011.
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.3
, pp. 1548-1566
-
-
Gross, D.1
-
7
-
-
84883093042
-
Beyond convex relaxation: A polynomial-time non-convex optimization approach to network localization
-
S. Ji, K.-F. Sze, Z. Zhou, A. M.-C. So, and Y. Ye. Beyond Convex Relaxation: A Polynomial-Time Non-Convex Optimization Approach to Network Localization. In Proc. 32nd IEEE INFOCOM, pages 2499-2507, 2013.
-
(2013)
Proc. 32nd IEEE INFOCOM
, pp. 2499-2507
-
-
Ji, S.1
Sze, K.-F.2
Zhou, Z.3
So, A.M.-C.4
Ye, Y.5
-
8
-
-
71149103464
-
An accelerated gradient method for trace norm minimization
-
S. Ji and J. Ye. An Accelerated Gradient Method for Trace Norm Minimization. In Proc. 26th ICML, pages 457-464, 2009.
-
(2009)
Proc. 26th ICML
, pp. 457-464
-
-
Ji, S.1
Ye, J.2
-
9
-
-
82655171609
-
Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion
-
V. Koltchinskii, K. Lounici, and A. B. Tsybakov. Nuclear-Norm Penalization and Optimal Rates for Noisy Low-Rank Matrix Completion. Ann. Stat., 39(5):2302-2329, 2011.
-
(2011)
Ann. Stat.
, vol.39
, Issue.5
, pp. 2302-2329
-
-
Koltchinskii, V.1
Lounici, K.2
Tsybakov, A.B.3
-
10
-
-
21344480786
-
Error bounds and convergence analysis of feasible descent methods: A general approach
-
Z.-Q. Luo and P. Tseng. Error Bounds and Convergence Analysis of Feasible Descent Methods: A General Approach. Ann. Oper. Res., 46(1):157-178, 1993.
-
(1993)
Ann. Oper. Res.
, vol.46
, Issue.1
, pp. 157-178
-
-
Luo, Z.-Q.1
Tseng, P.2
-
11
-
-
79957957723
-
Fixed point and bregman iterative methods for matrix rank minimization
-
S. Ma, D. Goldfarb, and L. Chen. Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization. Math. Program., 128(1-2):321-353, 2011.
-
(2011)
Math. Program.
, vol.128
, Issue.1-2
, pp. 321-353
-
-
Ma, S.1
Goldfarb, D.2
Chen, L.3
-
13
-
-
78549288866
-
Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
-
B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. SIAM Rev., 52(3):471-501, 2010.
-
(2010)
SIAM Rev.
, vol.52
, Issue.3
, pp. 471-501
-
-
Recht, B.1
Fazel, M.2
Parrilo, P.A.3
-
14
-
-
0004267646
-
-
Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton, New Jersey
-
R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton, New Jersey, 1997.
-
(1997)
Convex Analysis
-
-
Rockafellar, R.T.1
-
15
-
-
0004258516
-
-
volume 317 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin Heidelberg, second edition
-
R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin Heidelberg, second edition, 2004.
-
(2004)
Variational Analysis
-
-
Rockafellar, R.T.1
Wets, R.J.-B.2
-
16
-
-
85162564991
-
Convergence rates of inexact proximal-gradient methods for convex optimization
-
M. Schmidt, N. Le Roux, and F. Bach. Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization. In Proc. NIPS 2011, pages 1458-1466, 2011.
-
(2011)
Proc. NIPS 2011
, pp. 1458-1466
-
-
Schmidt, M.1
Le Roux, N.2
Bach, F.3
-
17
-
-
61449210981
-
A unified theorem on sdp rank reduction
-
A. M.-C. So, Y. Ye, and J. Zhang. A Unified Theorem on SDP Rank Reduction. Math. Oper. Res., 33(4):910-920, 2008.
-
(2008)
Math. Oper. Res.
, vol.33
, Issue.4
, pp. 910-920
-
-
So, A.M.-C.1
Ye, Y.2
Zhang, J.3
-
18
-
-
39549112606
-
Facial structures of schatten p-norms
-
W. So. Facial Structures of Schatten p-Norms. Linear and Multilinear Algebra, 27(3):207-212, 1990.
-
(1990)
Linear and Multilinear Algebra
, vol.27
, Issue.3
, pp. 207-212
-
-
So, W.1
-
19
-
-
78049448383
-
An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
-
K.-C. Toh and S. Yun. An Accelerated Proximal Gradient Algorithm for Nuclear Norm Regularized Linear Least Squares Problems. Pac. J. Optim., 6(3):615-640, 2010.
-
(2010)
Pac. J. Optim.
, vol.6
, Issue.3
, pp. 615-640
-
-
Toh, K.-C.1
Yun, S.2
-
20
-
-
34547992391
-
Classifying matrices with a spectral regularization
-
R. Tomioka and K. Aihara. Classifying Matrices with a Spectral Regularization. In Proc. of the 24th ICML, pages 895-902, 2007.
-
(2007)
Proc. of the 24th ICML
, pp. 895-902
-
-
Tomioka, R.1
Aihara, K.2
-
21
-
-
77956529188
-
A fast augmented lagrangian algorithm for learning low-rank matrices
-
R. Tomioka, T. Suzuki, M. Sugiyama, and H. Kashima. A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices. In Proc. 27th ICML, pages 1087-1094, 2010.
-
(2010)
Proc. 27th ICML
, pp. 1087-1094
-
-
Tomioka, R.1
Suzuki, T.2
Sugiyama, M.3
Kashima, H.4
-
22
-
-
77958113563
-
Approximation accuracy gradient methods and error bound for structured convex optimization
-
P. Tseng. Approximation Accuracy, Gradient Methods, and Error Bound for Structured Convex Optimization. Math. Program., 125(2):263-295, 2010.
-
(2010)
Math. Program.
, vol.125
, Issue.2
, pp. 263-295
-
-
Tseng, P.1
-
23
-
-
46749146509
-
A coordinate gradient descent method for nonsmooth separable minimization
-
P. Tseng and S. Yun. A Coordinate Gradient Descent Method for Nonsmooth Separable Minimization. Math. Program., 117(1-2):387-423, 2009.
-
(2009)
Math. Program.
, vol.117
, Issue.1-2
, pp. 387-423
-
-
Tseng, P.1
Yun, S.2
-
24
-
-
84877765673
-
Convex multi-view subspace learning
-
M. White, Y. Yu, X. Zhang, and D. Schuurmans. Convex Multi-View Subspace Learning. In Proc. NIPS 2012, pages 1682-1690, 2012.
-
(2012)
Proc. NIPS 2012
, pp. 1682-1690
-
-
White, M.1
Yu, Y.2
Zhang, X.3
Schuurmans, D.4
-
25
-
-
84898953952
-
On the linear convergence of a proximal gradient method for a class of nonsmooth convex minimization problems
-
H. Zhang, J. Jiang, and Z.-Q. Luo. On the Linear Convergence of a Proximal Gradient Method for a Class of Nonsmooth Convex Minimization Problems. J. Oper. Res. Soc. China, 1(2):163-186, 2013.
-
(2013)
J. Oper. Res. Soc. China
, vol.1
, Issue.2
, pp. 163-186
-
-
Zhang, H.1
Jiang, J.2
Luo, Z.-Q.3
|