-
2
-
-
80053439604
-
Fast Newton-type methods for total variation regularization
-
A. Barbero and S. Sra. Fast Newton-type methods for total variation regularization. In ICML, 2011.
-
(2011)
ICML
-
-
Barbero, A.1
Sra, S.2
-
4
-
-
2942687455
-
Finding best approximation pairs relative to two closed convex sets in hilbert spaces
-
H. H. Bauschke, P. L. Combettes, and D. R. Luke. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces. J. Approx. Theory, 127(2):178-192, 2004.
-
(2004)
J. Approx. Theory
, vol.127
, Issue.2
, pp. 178-192
-
-
Bauschke, H.H.1
Combettes, P.L.2
Luke, D.R.3
-
5
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
-
(2009)
SIAMJournal on Imaging Sciences
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
7
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE TPAMI, 23(11):1222-1239, 2001.
-
(2001)
IEEETPAMI
, vol.23
, Issue.11
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
8
-
-
84886018775
-
Efficient MRF energy minimization via adaptive diminishing smoothing
-
B.Savchynskyy, S.Schmidt, J.H.Kappes, and C.Schnörr. Efficient MRF energy minimization via adaptive diminishing smoothing. In UAI, 2012.
-
(2012)
UAI
-
-
Savchynskyy, B.1
Schmidt, S.2
Kappes, J.H.3
Schnörr, C.4
-
9
-
-
1242352408
-
An algorithm for total variation minimization and applications
-
A. Chambolle. An algorithm for total variation minimization and applications. J Math. Imaging and Vision, 20(1):89-97, 2004.
-
(2004)
J Math. Imaging and Vision
, vol.20
, Issue.1
, pp. 89-97
-
-
Chambolle, A.1
-
10
-
-
67349189437
-
On total variation minimization and surface evolution using parametric maximum flows
-
A. Chambolle and J. Darbon. On total variation minimization and surface evolution using parametric maximum flows. Int. Journal of Comp. Vision, 84(3):288-307, 2009.
-
(2009)
Int Journal of Comp. Vision
, vol.84
, Issue.3
, pp. 288-307
-
-
Chambolle, A.1
Darbon, J.2
-
11
-
-
84969134693
-
Efficient solutions to relaxations of combinatorial problems with submodular penalties via the Lovász extension and non-smooth convex optimization
-
F. Chudak and K. Nagano. Efficient solutions to relaxations of combinatorial problems with submodular penalties via the Lovász extension and non-smooth convex optimization. In SODA, 2007.
-
(2007)
SODA
-
-
Chudak, F.1
Nagano, K.2
-
14
-
-
84967782959
-
On the numerical solution of the heat conduction problem in 2 and 3 space variables
-
J. Douglas and H. H. Rachford. On the numerical solution of the heat conduction problem in 2 and 3 space variables. Tran. Amer. Math. Soc., 82:421-439, 1956.
-
(1956)
Tran. Amer. Math. Soc
, vol.82
, pp. 421-439
-
-
Douglas, J.1
Rachford, H.H.2
-
15
-
-
35248886188
-
Submodular functions, matroids, and certain polyhedra
-
Springer
-
J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial optimization - Eureka, you shrink!, pages 11-26. Springer, 2003.
-
(2003)
Combinatorial Optimization - Eureka, You Shrink!
, pp. 11-26
-
-
Edmonds, J.1
-
16
-
-
80053189937
-
Maximizing non-monotone submodular functions
-
U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular functions. SIAM J Comp, 40(4):1133-1153, 2011.
-
(2011)
SIAMJ Comp
, vol.40
, Issue.4
, pp. 1133-1153
-
-
Feige, U.1
Mirrokni, V.S.2
Vondrak, J.3
-
18
-
-
0039687324
-
Lexicographically optimal base of a polymatroid with respect to a weight vector
-
S. Fujishige. Lexicographically optimal base of a polymatroid with respect to a weight vector. Mathematics of Operations Research, pages 186-196, 1980.
-
(1980)
Mathematics of Operations Research
, pp. 186-196
-
-
Fujishige, S.1
-
20
-
-
79951736547
-
A submodular function minimization algorithm based on the minimum-norm base
-
S. Fujishige and S. Isotani. A submodular function minimization algorithm based on the minimum-norm base. Pacific Journal of Optimization, 7:3-17, 2011.
-
(2011)
Pacific Journal of Optimization
, vol.7
, pp. 3-17
-
-
Fujishige, S.1
Isotani, S.2
-
21
-
-
0026221935
-
Two algorithms for maximizing a separable concave function over a polymatroid feasible region
-
H. Groenevelt. Two algorithms for maximizing a separable concave function over a polymatroid feasible region. European Journal of Operational Research, 54(2):227-236, 1991.
-
(1991)
European Journal of Operational Research
, vol.54
, Issue.2
, pp. 227-236
-
-
Groenevelt, H.1
-
22
-
-
58149363429
-
About strongly polynomial time algorithms for quadratic optimization over submodular constraints
-
D.S. Hochbaum and S.-P. Hong. About strongly polynomial time algorithms for quadratic optimization over submodular constraints. Math. Prog., pages 269-309, 1995.
-
(1995)
Math. Prog
, pp. 269-309
-
-
Hochbaum, D.S.1
Hong, S.-P.2
-
23
-
-
9744249504
-
A network flow approach to cost allocation for rooted trees
-
S. Iwata and N. Zuiki. A network flow approach to cost allocation for rooted trees. Networks, 44:297-301, 2004.
-
(2004)
Networks
, vol.44
, pp. 297-301
-
-
Iwata, S.1
Zuiki, N.2
-
24
-
-
85162526249
-
On fast approximate submodular minimization
-
S. Jegelka, H. Lin, and J. Bilmes. On fast approximate submodular minimization. In NIPS, 2011.
-
(2011)
NIPS
-
-
Jegelka, S.1
Lin, H.2
Bilmes, J.3
-
26
-
-
80052234083
-
Proximal methods for hierarchical sparse coding
-
R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. Journal of Machine Learning Research, pages 2297-2334, 2011.
-
(2011)
Journal of Machine Learning Research
, pp. 2297-2334
-
-
Jenatton, R.1
Mairal, J.2
Obozinski, G.3
Bach, F.4
-
27
-
-
61349174704
-
Robust higher order potentials for enforcing label consistency
-
P. Kohli, L. Ladický, and P. Torr. Robust higher order potentials for enforcing label consistency. Int. Journal of Comp. Vision, 82, 2009.
-
(2009)
Int Journal of Comp. Vision
, vol.82
-
-
Kohli, P.1
Ladický, L.2
Torr, P.3
-
28
-
-
84864761190
-
Minimizing a sum of submodular functions
-
V. Kolmogorov. Minimizing a sum of submodular functions. Disc. Appl. Math., 160(15), 2012.
-
(2012)
Disc. Appl. Math
, vol.160
, Issue.15
-
-
Kolmogorov, V.1
-
29
-
-
79551518880
-
MRF energy minimization and beyond via dual decomposition
-
N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond via dual decomposition. IEEE TPAMI, 33(3):531-552, 2011.
-
(2011)
IEEETPAMI
, vol.33
, Issue.3
, pp. 531-552
-
-
Komodakis, N.1
Paragios, N.2
Tziritas, G.3
-
31
-
-
84859070008
-
A class of submodular functions for document summarization
-
H. Lin and J. Bilmes. A class of submodular functions for document summarization. In NAACL/HLT, 2011.
-
(2011)
NAACL/HLT
-
-
Lin, H.1
Bilmes, J.2
-
33
-
-
52949135806
-
Submodular function minimization
-
S. T. McCormick. Submodular function minimization. Discrete Optimization, 12:321-391, 2005.
-
(2005)
Discrete Optimization
, vol.12
, pp. 321-391
-
-
McCormick, S.T.1
-
34
-
-
84877766500
-
Convergence rate analysis of MAP coordinate minimization algorithms
-
O. Meshi, T. Jaakkola, and A. Globerson. Convergence rate analysis of MAP coordinate minimization algorithms. In NIPS, 2012.
-
(2012)
NIPS
-
-
Meshi, O.1
Jaakkola, T.2
Globerson, A.3
-
35
-
-
0000095809
-
An analysis of approximations for maximizing submodular set functions-I
-
G.L. Nemhauser, L.A.Wolsey, and M.L. Fisher. An analysis of approximations for maximizing submodular set functions-I. Math. Prog., 14(1):265-294, 1978.
-
(1978)
Math. Prog
, vol.14
, Issue.1
, pp. 265-294
-
-
Nemhauser, G.L.1
Wolsey, L.A.2
Fisher, M.L.3
-
36
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
Y. Nesterov. Smooth minimization of non-smooth functions. Math. Prog., 103(1):127-152, 2005.
-
(2005)
Math. Prog
, vol.103
, Issue.1
, pp. 127-152
-
-
Nesterov, Y.1
-
37
-
-
58149485960
-
A faster strongly polynomial time algorithm for submodular function minimization
-
J. B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization. Math. Prog., 118(2):237-251, 2009.
-
(2009)
Math. Prog
, vol.118
, Issue.2
, pp. 237-251
-
-
Orlin, J.B.1
-
38
-
-
80052904935
-
A study of Nesterov's scheme for Lagrangian decomposition and MAP labeling
-
B. Savchynskyy, S. Schmidt, J. Kappes, and C. Schnörr. A study of Nesterov's scheme for Lagrangian decomposition and MAP labeling. In CVPR, 2011.
-
(2011)
CVPR
-
-
Savchynskyy, B.1
Schmidt, S.2
Kappes, J.3
Schnörr, C.4
-
41
-
-
85162051091
-
Efficient minimization of decomposable submodular functions
-
P. Stobbe and A. Krause. Efficient minimization of decomposable submodular functions. In NIPS, 2010.
-
(2010)
NIPS
-
-
Stobbe, P.1
Krause, A.2
-
42
-
-
33750721305
-
Balancing applied to maximum network flow problems
-
R. Tarjan, J. Ward, B. Zhang, Y. Zhou, and J. Mao. Balancing applied to maximum network flow problems. In European Symp. on Algorithms (ESA), pages 612-623, 2006.
-
(2006)
European Symp. on Algorithms (ESA)
, pp. 612-623
-
-
Tarjan, R.1
Ward, J.2
Zhang, B.3
Zhou, Y.4
Mao, J.5
|