-
1
-
-
33748601484
-
Fast algorithms for approximate semidefinite programming using the multiplicative weights update method
-
IEEE
-
Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for approximate semidefinite programming using the multiplicative weights update method. In Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on, pages 339-348. IEEE, 2005.
-
(2005)
Foundations of Computer Science, 2005 2005. 46th Annual IEEE Symposium on
, pp. 339-348
-
-
Arora, S.1
Hazan, E.2
Kale, S.3
-
2
-
-
33750091599
-
A fast random sampling algorithm for sparsifying matrices
-
Berlin, Heidelberg, Springer- Verlag
-
Sanjeev Arora, Elad Hazan, and Satyen Kale. A fast random sampling algorithm for sparsifying matrices. In Proceedings of the 9th international conference on Approximation Algorithms for Combinatorial Optimization Problems, and 10th international conference on Randomization and Computation, APPROX'06/RANDOM'06, pages 272-279, Berlin, Heidelberg, 2006. Springer-Verlag.
-
(2006)
Proceedings of the 9th International Conference on Approximation Algorithms for Combinatorial Optimization Problems, and 10th International Conference on Randomization and Computation, APPROX'06/RANDOM'06
, pp. 272-279
-
-
Arora, S.1
Hazan, E.2
Kale, S.3
-
3
-
-
0036459716
-
On the concentration of eigenvalues of random symmetric matrices
-
Noga Alon, Michael Krivelevich, and VanH. Vu. On the concentration of eigenvalues of random symmetric matrices. Israel Journal of Mathematics, 131:259-267, 2002.
-
(2002)
Israel Journal of Mathematics
, vol.131
, pp. 259-267
-
-
Alon, N.1
Krivelevich, M.2
Van Vu, H.3
-
5
-
-
34247228045
-
Fast computation of low-rank matrix approximations
-
april
-
Dimitris Achlioptas and Frank Mcsherry. Fast computation of low-rank matrix approximations. J. ACM, 54(2), april 2007.
-
(2007)
J. ACM
, vol.54
, pp. 2
-
-
Achlioptas, D.1
McSherry, F.2
-
6
-
-
0036495139
-
Strong converse for identification via quantum channels
-
Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum channels. IEEE Transactions on Information Theory, 48(3):569-579, 2002.
-
(2002)
IEEE Transactions on Information Theory
, vol.48
, Issue.3
, pp. 569-579
-
-
Ahlswede, R.1
Winter, A.2
-
7
-
-
34247154714
-
Hyperquick algorithm for discrete hypergeometric distribution
-
Aleš Berkopec. Hyperquick algorithm for discrete hypergeometric distribution. Journal of Discrete Algorithms, 5(2):341-347, 2007.
-
(2007)
Journal of Discrete Algorithms
, vol.5
, Issue.2
, pp. 341-347
-
-
Berkopec, A.1
-
9
-
-
77951528523
-
The power of convex relaxation: Near-optimal matrix completion
-
Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix completion. Information Theory, IEEE Transactions on, 56(5):2053-2080, 2010.
-
(2010)
Information Theory. IEEE Transactions on
, vol.56
, Issue.5
, pp. 2053-2080
-
-
Candès, E.J.1
Tao, T.2
-
11
-
-
33751115359
-
Fast monte carlo algorithms for matrices; Approximating matrix multiplication
-
July
-
Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast monte carlo algorithms for matrices; approximating matrix multiplication. SIAM J. Comput., 36(1):132-157, July 2006.
-
(2006)
SIAM J. Comput.
, vol.36
, Issue.1
, pp. 132-157
-
-
Drineas, P.1
Kannan, R.2
Michael, W.M.3
-
12
-
-
78651554345
-
A note on element-wise matrix sparsification via a matrixvalued bernstein inequality
-
Petros Drineas and Anastasios Zouzias. A note on element-wise matrix sparsification via a matrixvalued bernstein inequality. Inf. Process. Lett., 111(8):385-389, 2011.
-
(2011)
Inf. Process. Lett.
, vol.111
, Issue.8
, pp. 385-389
-
-
Drineas, P.1
Zouzias, A.2
-
13
-
-
51249182622
-
The eigenvalues of random symmetric matrices
-
Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combinatorica, 1(3):233-241, 1981.
-
(1981)
Combinatorica
, vol.1
, Issue.3
, pp. 233-241
-
-
Füredi, Z.1
Komlós, J.2
-
15
-
-
0003501205
-
On the spectrum of a random graph
-
Szeged, (1978), volume 25 of Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam
-
F. Juhász. On the spectrum of a random graph. In Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), volume 25 of Colloq. Math. Soc. János Bolyai, pages 313-316. North-Holland, Amsterdam, 1981.
-
(1981)
Algebraic Methods in Graph Theory
, vol.1-2
, pp. 313-316
-
-
Juhász, F.1
-
18
-
-
34948903793
-
Object retrieval with large vocabularies and fast spatial matching
-
J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007.
-
(2007)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
-
Philbin, J.1
Chum, O.2
Isard, M.3
Sivic, J.4
Zisserman, A.5
-
19
-
-
84856009825
-
A simpler approach to matrix completion
-
December
-
Benjamin Recht. A simpler approach to matrix completion. J. Mach. Learn. Res., 12:3413-3430, December 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 3413-3430
-
-
Recht, B.1
-
20
-
-
34547728320
-
Sampling from large matrices: An approach through geometric functional analysis
-
July
-
Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through geometric functional analysis. J. ACM, 54(4), July 2007.
-
(2007)
J. ACM
, vol.54
, pp. 4
-
-
Rudelson, M.1
Vershynin, R.2
-
21
-
-
84898999593
-
The enronsent corpus
-
University of Colorado at Boulder Institute of Cognitive Science, Boulder, CO.
-
Will Styler. The enronsent corpus. In Technical Report 01-2011, University of Colorado at Boulder Institute of Cognitive Science, Boulder, CO., 2011.
-
(2011)
Technical Report 01-2011
-
-
Styler, W.1
-
22
-
-
84864315555
-
User-friendly tail bounds for sums of random matrices
-
Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):389-434, 2012.
-
(2012)
Foundations of Computational Mathematics
, vol.12
, Issue.4
, pp. 389-434
-
-
Joel, A.T.1
-
23
-
-
84864315555
-
User-friendly tail bounds for sums of random matrices
-
Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4):389-434, 2012.
-
(2012)
Foundations of Computational Mathematics
, vol.12
, Issue.4
, pp. 389-434
-
-
Joel, A.T.1
-
24
-
-
0001560594
-
On the distribution of the roots of certain symmetric matrices
-
Eugene P. Wigner. On the distribution of the roots of certain symmetric matrices. Annals of Mathematics, 67(2):pp. 325-327, 1958.
-
(1958)
Annals of Mathematics
, vol.67
, Issue.2
, pp. 325-327
-
-
Eugene, P.W.1
|