메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Provable Subspace Clustering: When LRR meets SSC

Author keywords

[No Author keywords available]

Indexed keywords

CONVEX OPTIMIZATION;

EID: 84898994032     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (206)

References (29)
  • 2
    • 79953211463 scopus 로고    scopus 로고
    • Identification of switched linear systems via sparse optimization
    • L. Bako. Identification of switched linear systems via sparse optimization. Automatica, 47(4):668-677, 2011.
    • (2011) Automatica , vol.47 , Issue.4 , pp. 668-677
    • Bako, L.1
  • 3
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, 3(1):1-122, 2011.
    • (2011) Foundations and Trends® in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 10
    • 34250075248 scopus 로고
    • Computational complexity of inner and outerj-radii of polytopes in finitedimensional normed spaces
    • P. Gritzmann and V. Klee. Computational complexity of inner and outerj-radii of polytopes in finitedimensional normed spaces. Mathematical programming, 59(1):163-213, 1993.
    • (1993) Mathematical Programming , vol.59 , Issue.1 , pp. 163-213
    • Gritzmann, P.1    Klee, V.2
  • 15
    • 85162350693 scopus 로고    scopus 로고
    • Linearized alternating direction method with adaptive penalty for low-rank representation
    • NIPS'11
    • Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adaptive penalty for low-rank representation. In Advances in Neural Information Processing Systems 24 (NIPS'11), pages 612-620. 2011.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 612-620
    • Lin, Z.1    Liu, R.2    Su, Z.3
  • 22
    • 84884476031 scopus 로고    scopus 로고
    • A geometric analysis of subspace clustering with outliers
    • M. Soltanolkotabi and E.J. Candes. A geometric analysis of subspace clustering with outliers. The Annals of Statistics, 40(4):2195-2238, 2012.
    • (2012) The Annals of Statistics , vol.40 , Issue.4 , pp. 2195-2238
    • Soltanolkotabi, M.1    Candes, E.J.2
  • 23
    • 34948881815 scopus 로고    scopus 로고
    • A benchmark for the comparison of 3-d motion segmentation algorithms
    • IEEE
    • R. Tron and R. Vidal. A benchmark for the comparison of 3-d motion segmentation algorithms. In Computer Vision and Pattern Recognition (CVPR'07), pages 1-8. IEEE, 2007.
    • (2007) Computer Vision and Pattern Recognition (CVPR'07) , pp. 1-8
    • Tron, R.1    Vidal, R.2
  • 24
    • 85032760331 scopus 로고    scopus 로고
    • Subspace clustering
    • IEEE
    • R. Vidal. Subspace clustering. Signal Processing Magazine, IEEE, 28(2):52-68, 2011.
    • (2011) Signal Processing Magazine , vol.28 , Issue.2 , pp. 52-68
    • Vidal, R.1
  • 27
    • 42549164992 scopus 로고    scopus 로고
    • Multiframe motion segmentation with missing data using powerfactorization and gpca
    • R. Vidal, R. Tron, and R. Hartley. Multiframe motion segmentation with missing data using powerfactorization and gpca. International Journal of Computer Vision, 79(1):85-105, 2008.
    • (2008) International Journal of Computer Vision , vol.79 , Issue.1 , pp. 85-105
    • Vidal, R.1    Tron, R.2    Hartley, R.3
  • 28
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395-416, 2007.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.