메뉴 건너뛰기




Volumn 57, Issue 4, 2014, Pages 773-783

An entransy dissipation-based optimization principle for solar power tower plants

Author keywords

entransy dissipation; heat transfer network; optimization; solar power tower system

Indexed keywords

ENERGY EFFICIENCY; ENTHALPY; HEAT EXCHANGERS; INVESTMENTS; MIXING; OPTIMIZATION; SOLAR ENERGY; SPECIFIC HEAT; THERMAL CONDUCTIVITY;

EID: 84898983043     PISSN: 16747321     EISSN: 18691900     Source Type: Journal    
DOI: 10.1007/s11431-014-5491-7     Document Type: Article
Times cited : (32)

References (32)
  • 1
    • 0346543763 scopus 로고    scopus 로고
    • An update on solar central receiver systems, projects, and technologies
    • 10.1115/1.1467921
    • Romero M, Buck R, Pacheco J E. An update on solar central receiver systems, projects, and technologies. J Sol Energ-T ASME, 2002, 124: 98-108
    • (2002) J Sol Energ-T ASME , vol.124 , pp. 98-108
    • Romero, M.1    Buck, R.2    Pacheco, J.E.3
  • 2
    • 78650304605 scopus 로고    scopus 로고
    • Thermal performance simulation of a solar cavity receiver under windy conditions
    • 10.1016/j.solener.2010.10.013
    • Fang J B, Wei J J, Dong X W, et al. Thermal performance simulation of a solar cavity receiver under windy conditions. Sol Energy, 2011, 85: 126-138
    • (2011) Sol Energy , vol.85 , pp. 126-138
    • Fang, J.B.1    Wei, J.J.2    Dong, X.W.3
  • 3
    • 45249097340 scopus 로고    scopus 로고
    • Central receiver system solar power plant using molten salt as heat transfer fluid
    • 10.1115/1.2807210
    • Ortega J I, Burgaleta J I, Tellez F M. Central receiver system solar power plant using molten salt as heat transfer fluid. J Sol Energ-T ASME, 2008, 130: 0245011
    • (2008) J Sol Energ-T ASME , vol.130 , pp. 0245011
    • Ortega, J.I.1    Burgaleta, J.I.2    Tellez, F.M.3
  • 4
    • 78651367192 scopus 로고    scopus 로고
    • Heliostat field layout optimization for high-temperature solar thermochemical processing
    • 10.1016/j.solener.2010.11.018
    • Pitz P R, Botero N B, Steinfeld A. Heliostat field layout optimization for high-temperature solar thermochemical processing. Sol Energy, 2011, 85: 334-343
    • (2011) Sol Energy , vol.85 , pp. 334-343
    • Pitz, P.R.1    Botero, N.B.2    Steinfeld, A.3
  • 5
    • 84855794241 scopus 로고    scopus 로고
    • Heliostat field optimization: A new computationally efficient model and biomimetic layout
    • 10.1016/j.solener.2011.12.007
    • Noone C J, Torrilhon M, Mitsos A. Heliostat field optimization: A new computationally efficient model and biomimetic layout. Sol Energy, 2012, 86: 792-803
    • (2012) Sol Energy , vol.86 , pp. 792-803
    • Noone, C.J.1    Torrilhon, M.2    Mitsos, A.3
  • 6
    • 77649187452 scopus 로고    scopus 로고
    • Heat transfer performance and exergetic optimization for solar receiver pipe
    • 10.1016/j.renene.2009.09.002
    • Lu J F, Ding J, Yang J P. Heat transfer performance and exergetic optimization for solar receiver pipe. Renew Energ, 2010, 35: 1477-1483
    • (2010) Renew Energ , vol.35 , pp. 1477-1483
    • Lu, J.F.1    Ding, J.2    Yang, J.P.3
  • 7
    • 77957361849 scopus 로고    scopus 로고
    • Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation
    • 10.1016/j.solener.2010.02.010
    • Lu J F, Ding J, Yang J P. Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation. Sol Energy, 2010, 84: 1879-1887
    • (2010) Sol Energy , vol.84 , pp. 1879-1887
    • Lu, J.F.1    Ding, J.2    Yang, J.P.3
  • 8
    • 81855181598 scopus 로고    scopus 로고
    • Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers
    • Montes M J, Rovira A, Martínez V J M, et al. Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers. Appl Therm Eng, 2012, 35: 220-232
    • (2012) Appl Therm Eng , vol.35 , pp. 220-232
    • Montes, M.J.1    Rovira, A.2    Martínez, V.J.M.3
  • 9
    • 84858298735 scopus 로고    scopus 로고
    • Numerical investigations on a pressurized volumetric receiver: Solar concentrating and collecting modelling
    • 10.1016/j.renene.2012.02.001
    • He Y L, Cheng Z D, Cui F Q, et al. Numerical investigations on a pressurized volumetric receiver: Solar concentrating and collecting modelling. Renew Energ, 2012, 44: 368-379
    • (2012) Renew Energ , vol.44 , pp. 368-379
    • He, Y.L.1    Cheng, Z.D.2    Cui, F.Q.3
  • 10
    • 84867230569 scopus 로고    scopus 로고
    • Numerical simulations of the solar transmission process for a pressurized volumetric receiver
    • 10.1016/j.energy.2012.07.044
    • Cui F Q, He Y L, Cheng Z D, et al. Numerical simulations of the solar transmission process for a pressurized volumetric receiver. Energy, 2012, 46: 618-628
    • (2012) Energy , vol.46 , pp. 618-628
    • Cui, F.Q.1    He, Y.L.2    Cheng, Z.D.3
  • 11
    • 84866534588 scopus 로고    scopus 로고
    • Numerical investigations on coupled heat transfer and synthetical performance of a pressurized volumetric receiver with MCRT-FVM method
    • 10.1016/j.applthermaleng.2012.08.045
    • Cheng Z D, He Y L, Cui F Q. Numerical investigations on coupled heat transfer and synthetical performance of a pressurized volumetric receiver with MCRT-FVM method. Appl Therm Eng, 2013, 50: 1044-1054
    • (2013) Appl Therm Eng , vol.50 , pp. 1044-1054
    • Cheng, Z.D.1    He, Y.L.2    Cui, F.Q.3
  • 12
    • 77958181556 scopus 로고    scopus 로고
    • A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector
    • 10.1016/j.renene.2010.07.017
    • He Y L, Xiao J, Cheng Z D, et al. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew Energ, 2010, 36: 976-985
    • (2010) Renew Energ , vol.36 , pp. 976-985
    • He, Y.L.1    Xiao, J.2    Cheng, Z.D.3
  • 13
    • 84869878806 scopus 로고    scopus 로고
    • A new modelling method and unified code with MCRT for concentrating solar collectors and its applications
    • 10.1016/j.apenergy.2012.07.048
    • Cheng Z D, He Y L, Cui F Q. A new modelling method and unified code with MCRT for concentrating solar collectors and its applications. Appl Energ, 2013, 101: 686-698
    • (2013) Appl Energ , vol.101 , pp. 686-698
    • Cheng, Z.D.1    He, Y.L.2    Cui, F.Q.3
  • 14
    • 84884731092 scopus 로고    scopus 로고
    • The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium
    • 10.1016/j.apenergy.2013.08.044
    • Wu M, Li, M J, Xu C, et al. The impact of concrete structure on the thermal performance of the dual-media thermocline thermal storage tank using concrete as the solid medium. Appl Energ, 2014, 113: 1363-1371
    • (2014) Appl Energ , vol.113 , pp. 1363-1371
    • Wu, M.1    Li, M.J.2    Xu, C.3
  • 15
    • 84896854308 scopus 로고    scopus 로고
    • Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules
    • 10.1016/j.apenergy.2014.01.085
    • He Y L, Wu M, Xu C. Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules. Appl Energ, 2014, 121: 184-195
    • (2014) Appl Energ , vol.121 , pp. 184-195
    • He, Y.L.1    Wu, M.2    Xu, C.3
  • 16
    • 84927805256 scopus 로고    scopus 로고
    • Effects of parameters on performance of high temperature molten salt latent heat storage unit
    • Tao Y B, Li M J, He Y L, et al. Effects of parameters on performance of high temperature molten salt latent heat storage unit. Appl Therm Eng, 2014, doi: 10.1016/j.applthermaleng.2014.01.038
    • (2014) Appl Therm Eng
    • Tao, Y.B.1    Li, M.J.2    He, Y.L.3
  • 17
    • 80052926981 scopus 로고    scopus 로고
    • Energy and exergy analysis of solar power tower plants
    • 10.1016/j.applthermaleng.2011.07.038
    • Xu C, Wang Z F, Li X, et al. Energy and exergy analysis of solar power tower plants. Appl Therm Eng, 2011, 31: 3904-3913
    • (2011) Appl Therm Eng , vol.31 , pp. 3904-3913
    • Xu, C.1    Wang, Z.F.2    Li, X.3
  • 18
    • 84865580201 scopus 로고    scopus 로고
    • Strategies in tower solar power plant optimization
    • 10.1016/j.solener.2012.05.024
    • Ramos A, Ramos F. Strategies in tower solar power plant optimization. Sol Energy, 2012, 86: 2536-2548
    • (2012) Sol Energy , vol.86 , pp. 2536-2548
    • Ramos, A.1    Ramos, F.2
  • 19
    • 33947720528 scopus 로고    scopus 로고
    • Entransy-a physical quantity describing heat transfer ability
    • 10.1016/j.ijheatmasstransfer.2006.11.034 1119.80326
    • Guo Z Y, Zhu H Y, Liang X G. Entransy-a physical quantity describing heat transfer ability. Int J Heat Mass Tran, 2007, 50: 2545-2556
    • (2007) Int J Heat Mass Tran , vol.50 , pp. 2545-2556
    • Guo, Z.Y.1    Zhu, H.Y.2    Liang, X.G.3
  • 20
    • 65349084278 scopus 로고    scopus 로고
    • Irreversibility of heat conduction in complex multiphase systems and its application to the effective thermal conductivity of porous media
    • Chen Q, Wang M, Pan N, et al. Irreversibility of heat conduction in complex multiphase systems and its application to the effective thermal conductivity of porous media. Int J Nonlin Sci Num, 2009, 10: 57-66
    • (2009) Int J Nonlin Sci Num , vol.10 , pp. 57-66
    • Chen, Q.1    Wang, M.2    Pan, N.3
  • 21
    • 78651518447 scopus 로고    scopus 로고
    • Constructal entransy dissipation rate minimization for umbrella-shaped assembly of cylindrical fins
    • 10.1007/s11431-010-4152-8 1219.80094
    • Xiao Q H, Chen L G, Sun F R. Constructal entransy dissipation rate minimization for umbrella-shaped assembly of cylindrical fins. Sci China Tech Sci, 2011, 54: 211-219
    • (2011) Sci China Tech Sci , vol.54 , pp. 211-219
    • Xiao, Q.H.1    Chen, L.G.2    Sun, F.R.3
  • 22
    • 57349096308 scopus 로고    scopus 로고
    • Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation
    • 10.1007/s11434-008-0526-8
    • Chen Q, Ren J X. Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation. Chin Sci Bull, 2008, 53: 3753-3761
    • (2008) Chin Sci Bull , vol.53 , pp. 3753-3761
    • Chen, Q.1    Ren, J.X.2
  • 24
    • 80051683610 scopus 로고    scopus 로고
    • Radiative entransy flux in enclosures with non-isothermal or non-grey, opaque, diffuse surfaces and its application
    • 10.1007/s11431-011-4419-8
    • Cheng X T, Xu X H, Liang X G. Radiative entransy flux in enclosures with non-isothermal or non-grey, opaque, diffuse surfaces and its application. Sci China Tech Sci, 2011, 54: 2446-2456
    • (2011) Sci China Tech Sci , vol.54 , pp. 2446-2456
    • Cheng, X.T.1    Xu, X.H.2    Liang, X.G.3
  • 25
    • 46749091778 scopus 로고    scopus 로고
    • Application of entransy dissipation extremum principle in radiative heat transfer optimization
    • 10.1007/s11431-008-0141-6 1144.80354 2420975
    • Wu J, Liang X G. Application of entransy dissipation extremum principle in radiative heat transfer optimization. Sci China Ser E: Tech Sci, 2008, 51: 1306-1314
    • (2008) Sci China ser E: Tech Sci , vol.51 , pp. 1306-1314
    • Wu, J.1    Liang, X.G.2
  • 26
    • 84859956025 scopus 로고    scopus 로고
    • An entransy dissipation-based optimization principle for building central chilled water systems
    • 10.1016/j.energy.2011.10.047
    • Chen Q, Xu Y C. An entransy dissipation-based optimization principle for building central chilled water systems. Energy, 2012, 37: 571-579
    • (2012) Energy , vol.37 , pp. 571-579
    • Chen, Q.1    Xu, Y.C.2
  • 27
    • 84860837993 scopus 로고    scopus 로고
    • A global optimization method for evaporative cooling systems based on the entransy theory
    • 10.1016/j.energy.2012.03.070 3059219
    • Yuan F, Chen Q. A global optimization method for evaporative cooling systems based on the entransy theory. Energy, 2012, 42: 181-191
    • (2012) Energy , vol.42 , pp. 181-191
    • Yuan, F.1    Chen, Q.2
  • 28
    • 79954604742 scopus 로고    scopus 로고
    • Application of entransy to optimization design of parallel thermal network of thermal control system in spacecraft
    • 10.1007/s11431-011-4294-3 1237.80006
    • Cheng X T, Xu X H, Liang X G. Application of entransy to optimization design of parallel thermal network of thermal control system in spacecraft. Sci China Tech Sci, 2011, 54: 964-971
    • (2011) Sci China Tech Sci , vol.54 , pp. 964-971
    • Cheng, X.T.1    Xu, X.H.2    Liang, X.G.3
  • 29
    • 84862777224 scopus 로고    scopus 로고
    • An entransy dissipation-based method for global optimization of district heating networks
    • 10.1016/j.enbuild.2012.01.008
    • Xu Y C, Chen Q. An entransy dissipation-based method for global optimization of district heating networks. Energ Build, 2012, 48: 50-60
    • (2012) Energ Build , vol.48 , pp. 50-60
    • Xu, Y.C.1    Chen, Q.2
  • 30
    • 73249144989 scopus 로고    scopus 로고
    • Thermal model and thermodynamic performance of molten salt cavity receiver
    • 10.1016/j.renene.2009.11.017
    • Li X, Kong W Q, Wang Z F, et al. Thermal model and thermodynamic performance of molten salt cavity receiver. Renew Energy, 2010, 35: 981-988
    • (2010) Renew Energy , vol.35 , pp. 981-988
    • Li, X.1    Kong, W.Q.2    Wang, Z.F.3
  • 31
    • 77953134021 scopus 로고    scopus 로고
    • A new approach to analysis and optimization of evaporative cooling system I: Theory
    • 10.1016/j.energy.2010.02.037
    • Chen Q, Yang K, Wang M, et al. A new approach to analysis and optimization of evaporative cooling system I: Theory. Energy, 2010, 35: 2448-2454
    • (2010) Energy , vol.35 , pp. 2448-2454
    • Chen, Q.1    Yang, K.2    Wang, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.