메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Parallel sampling of DP mixture models using sub-clusters splits

Author keywords

[No Author keywords available]

Indexed keywords

ITERATIVE METHODS; MIXTURES;

EID: 84898962662     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (99)

References (32)
  • 2
    • 33645025214 scopus 로고    scopus 로고
    • Hierarchical topic models and the nested Chinese restaurant process
    • D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical topic models and the nested Chinese restaurant process. In NIPS, 2003.
    • (2003) NIPS
    • Blei, D.M.1    Griffiths, T.L.2    Jordan, M.I.3    Tenenbaum, J.B.4
  • 3
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for dirichlet process mixtures
    • D. M. Blei and M. I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1:121-144, 2005.
    • (2005) Bayesian Analysis , vol.1 , pp. 121-144
    • Blei, D.M.1    Jordan, M.I.2
  • 4
    • 0000904732 scopus 로고
    • A semiparametric Bayesian model for randomised block designs
    • C. A. Bush and S. N. MacEachern. A semiparametric Bayesian model for randomised block designs. Biometrika, 83:275-285, 1973.
    • (1973) Biometrika , vol.83 , pp. 275-285
    • Bush, C.A.1    Maceachern, S.N.2
  • 7
    • 84878592020 scopus 로고    scopus 로고
    • MCMC for normalized random measure mixture models
    • S. Favaro and Y. W. Teh. MCMC for normalized random measure mixture models. Statistical Science, 2013.
    • (2013) Statistical Science
    • Favaro, S.1    The, Y.W.2
  • 8
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1(2):209-230, 1973.
    • (1973) The Annals of Statistics , vol.1 , Issue.2 , pp. 209-230
    • Ferguson, T.S.1
  • 9
    • 0035531242 scopus 로고    scopus 로고
    • Modelling heterogeneity with and without the Dirichlet process
    • P. J. Green and S. Richardson. Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics, pages 355-375, 2001.
    • (2001) Scandinavian Journal of Statistics , pp. 355-375
    • Green, P.J.1    Richardson, S.2
  • 10
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97-109, 1970.
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 12
    • 0036623091 scopus 로고    scopus 로고
    • Exact and approximate sum-representations for the Dirichlet process
    • H. Ishwaran and M. Zarepour. Exact and approximate sum-representations for the Dirichlet process. Canadian Journal of Statistics, 30:269-283, 2002.
    • (2002) Canadian Journal of Statistics , vol.30 , pp. 269-283
    • Ishwaran, H.1    Zarepour, M.2
  • 13
    • 1842486852 scopus 로고    scopus 로고
    • A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model
    • S. Jain and R. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Journal of Computational and Graphical Statistics, 13:158 182, 2000.
    • (2000) Journal of Computational and Graphical Statistics , vol.13 , Issue.158 , pp. 182
    • Jain, S.1    Neal, R.2
  • 14
    • 44649182304 scopus 로고    scopus 로고
    • Splitting and merging components of a nonconjugate Dirichlet process mixture model
    • S. Jain and R. Neal. Splitting and merging components of a nonconjugate Dirichlet process mixture model. Bayesian Analysis, 2(3):445-472, 2007.
    • (2007) Bayesian Analysis , vol.2 , Issue.3 , pp. 445-472
    • Jain, S.1    Neal, R.2
  • 16
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 85162044398 scopus 로고    scopus 로고
    • Construction of dependent Dirichlet processes based on Poisson processes
    • D. Lin, E. Grimson, and J. W. Fisher III. Construction of dependent Dirichlet processes based on Poisson processes. In NIPS, 2010.
    • (2010) NIPS
    • Lin, D.1    Grimson, E.2    Fisher III, J.W.3
  • 19
    • 84899015017 scopus 로고    scopus 로고
    • Parallel markov chain monte carlo for dirichlet process mixtures workshop on big learning
    • D. Lovell, R. P. Adams, and V. K. Mansingka. Parallel Markov chain Monte Carlo for Dirichlet process mixtures. In Workshop on Big Learning, NIPS, 2012.
    • (2012) NIPS
    • Lovell, D.1    Adams, R.P.2    Mansingka, V.K.3
  • 23
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • June
    • R. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2):249-265, June 2000.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.1
  • 24
    • 40249114903 scopus 로고    scopus 로고
    • Retrospective markov chain monte carlo methods for dirichlet process hierarchical models
    • O. Papaspiliopoulos and G. O. Roberts. Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika, 95(1):169-186, 2008
    • (2008) Biometrika , vol.95 , Issue.1 , pp. 169-186
    • Papaspiliopoulos, O.1    Roberts, G.O.2
  • 26
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • J. Sethuraman. A constructive definition of Dirichlet priors. Statstica Sinica, pages 639-650, 1994.
    • (1994) Statstica Sinica , pp. 639-650
    • Sethuraman, J.1
  • 30
    • 0002612391 scopus 로고
    • Hierarchical priors and mixture models, with application in regression and density estimation
    • M. West, P. Müller, and S. N. MacEachern. Hierarchical priors and mixture models, with application in regression and density estimation. Aspects of Uncertainity, pages 363-386, 1994.
    • (1994) Aspects of Uncertainity , pp. 363-386
    • West, M.1    Müller, P.2    Maceachern, S.N.3
  • 31
    • 84897382844 scopus 로고    scopus 로고
    • Parallel markov chain monte carlo for nonparametric mixture models
    • S. A. Williamson, A. Dubey, and E. P. Xing. Parallel Markov chain Monte Carlo for nonparametric mixture models. In ICML, 2013.
    • (2013) ICML
    • Williamson, S.A.1    Dubey, A.2    Xing, E.P.3
  • 32
    • 14344265816 scopus 로고    scopus 로고
    • Bayesian haplotype inference via the Dirichlet process
    • E. P. Xing, R. Sharan, and M. I. Jordan. Bayesian haplotype inference via the Dirichlet process. In ICML, 2004.
    • (2004) ICML
    • Xing, E.P.1    Sharan, R.2    Jordan, M.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.