메뉴 건너뛰기




Volumn , Issue , 2014, Pages 89-98

FPGA-based biophysically-meaningful modeling of olivocerebellar neurons

Author keywords

Cerebellum; Computational Neuroscience; Hodgkin Huxley; Inferior Olive; Spiking Neural Networks

Indexed keywords

COMPUTER SIMULATION; IONS; MATLAB; NEURAL NETWORKS; NEUROLOGY; NEURONS;

EID: 84898957720     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2554688.2554790     Document Type: Conference Paper
Times cited : (43)

References (20)
  • 3
    • 84898990045 scopus 로고    scopus 로고
    • [Online; accessed 18-December-2013]
    • D. Bruderle. PyNN and the FACETS Hardware. www.neuralensemble.org/media/ slides/CodeJam2-Bruederle-FacetsHardware.pdf, [Online; accessed 18-December-2013] 2008.
    • (2008) PyNN and the FACETS Hardware
    • Bruderle, D.1
  • 4
    • 77949419598 scopus 로고    scopus 로고
    • A parallel spiking neural network simulator
    • Dec.
    • K. Cheung, S. R. Schultz, and P. H. W. Leong. A Parallel Spiking Neural Network Simulator. In Int. Conf. on FPT, pages 47-254, Dec. 2009.
    • (2009) Int. Conf. on FPT , pp. 47-254
    • Cheung, K.1    Schultz, S.R.2    Leong, P.H.W.3
  • 7
    • 0035330747 scopus 로고    scopus 로고
    • The CAM-brain machine CBM: An FPGA based tool for evolving a 75 million neuron artificial brain to control a lifesized kitten robot
    • May
    • H. de Garis, M. Korkin, and G. Fehr. The CAM-Brain Machine CBM: An FPGA Based Tool for Evolving a 75 Million Neuron Artificial Brain to Control a Lifesized Kitten Robot. Auton. Robots, 10(3):235-249, May 2001.
    • (2001) Auton. Robots , vol.10 , Issue.3 , pp. 235-249
    • De Garis, H.1    Korkin, M.2    Fehr, G.3
  • 9
    • 0022693272 scopus 로고
    • Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation
    • G. Ermentrout and N. Kopell. Parabolic Bursting in an Excitable System Coupled With a Slow Oscillation. SIAM J on Applied Mathematics, 46:233-253, 1986.
    • (1986) SIAM J on Applied Mathematics , vol.46 , pp. 233-253
    • Ermentrout, G.1    Kopell, N.2
  • 10
    • 0030195232 scopus 로고    scopus 로고
    • Type i membranes, phase resetting curves, and synchrony
    • G. B. Ermentrout. Type I membranes, phase resetting curves, and synchrony. Neural Computation, 83:979-1001, 1996.
    • (1996) Neural Computation , vol.83 , pp. 979-1001
    • Ermentrout, G.B.1
  • 11
    • 35649001607 scopus 로고
    • Quantitative description of membrane current and application to conduction and excitation in nerve
    • A. L. Hodgkin and A. F. Huxley. Quantitative description of membrane current and application to conduction and excitation in nerve. Journal Physiology, 117:500-544, 1954.
    • (1954) Journal Physiology , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 13
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • E. Izhikevich. Which Model to Use for Cortical Spiking Neurons? IEEE Trans on Neural Net., 15(5), 2004.
    • (2004) IEEE Trans on Neural Net. , vol.15 , Issue.5
    • Izhikevich, E.1
  • 14
    • 84898929097 scopus 로고    scopus 로고
    • Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons
    • W. Maass. Noisy Spiking Neurons with Temporal Coding have more Computational Power than Sigmoidal Neurons. In Neural Information Processing Systems, pages 211-217, 1996.
    • (1996) Neural Information Processing Systems , pp. 211-217
    • Maass, W.1
  • 15
    • 84864932722 scopus 로고    scopus 로고
    • Bluehive-A field-programable custom computing machine for extreme-scale real-time neural network simulation
    • S. W. Moore, P. J. Fox, S. J. Marsh, A. T. Markettos, and A. Mujumdar. Bluehive-A Field-Programable Custom Computing Machine for Extreme-Scale Real-Time Neural Network Simulation. In IEEE Int. Symp. on FCCM, pages 133-140, 2012.
    • (2012) IEEE Int. Symp. on FCCM , pp. 133-140
    • Moore, S.W.1    Fox, P.J.2    Marsh, S.J.3    Markettos, A.T.4    Mujumdar, A.5
  • 16
    • 84898997790 scopus 로고    scopus 로고
    • National Academy of Engineering (nae.edu). Grand Challenges for Engineering
    • National Academy of Engineering (nae.edu). Grand Challenges for Engineering, 2010.
    • (2010)
  • 18
    • 51949097982 scopus 로고    scopus 로고
    • Hardware implementation of a bio-plausible neuron model for evolution and growth of spiking neural networks on fpga
    • June
    • H. Shayani, P. Bentley, and A. M. Tyrrell. Hardware Implementation of a Bio-plausible Neuron Model for Evolution and Growth of Spiking Neural Networks on FPGA. In NASA/ESA Conf. on Adaptive Hardware and Systems, pages 236-243, June 2008.
    • (2008) NASA/ESA Conf. on Adaptive Hardware and Systems , pp. 236-243
    • Shayani, H.1    Bentley, P.2    Tyrrell, A.M.3
  • 20
    • 84873369869 scopus 로고    scopus 로고
    • Biophysically accurate floating point neuroprocessors for reconfigurable logic
    • march
    • Y. Zhang, J. P. McGeehan, E. M. Regan, S. Kelly, and J. L. Nunez-Yanez. Biophysically Accurate Floating Point Neuroprocessors for Reconfigurable Logic. IEEE Trans on Computers, 62(3):599-608, march 2013.
    • (2013) IEEE Trans on Computers , vol.62 , Issue.3 , pp. 599-608
    • Zhang, Y.1    McGeehan, J.P.2    Regan, E.M.3    Kelly, S.4    Nunez-Yanez, J.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.