메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Learning adaptive value of information for structured prediction

Author keywords

[No Author keywords available]

Indexed keywords

ARTICULATED POSE ESTIMATIONS; DISCRIMINATIVE METHODS; FEATURE SELECTION METHODS; STATE-OF-THE-ART METHODS; STRUCTURED PREDICTION; TIME SENSITIVE APPLICATIONS; VALUE FUNCTION APPROXIMATION; VALUE OF INFORMATION;

EID: 84898953701     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (20)

References (23)
  • 3
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms
    • M. Collins. Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In Proc. EMNLP, 2002.
    • (2002) Proc. EMNLP
    • Collins, M.1
  • 4
    • 85162423878 scopus 로고    scopus 로고
    • Active classification based on value of classifier
    • T. Gao and D. Koller. Active classification based on value of classifier. In NIPS, 2011.
    • (2011) NIPS
    • Gao, T.1    Koller, D.2
  • 5
    • 84867123721 scopus 로고    scopus 로고
    • Speedboost: Anytime prediction with uniform near-optimality
    • A. Grubb and D. Bagnell. Speedboost: Anytime prediction with uniform near-optimality. In AISTATS, 2012.
    • (2012) AISTATS
    • Grubb, A.1    Bagnell, D.2
  • 7
    • 84926348127 scopus 로고    scopus 로고
    • Dynamic feature selection for dependency parsing
    • H. He, H. Daumé III, and J. Eisner. Dynamic feature selection for dependency parsing. In EMNLP, 2013.
    • (2013) EMNLP
    • He, H.1    Daumé III, H.2    Eisner, J.3
  • 10
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J.D. Lafferty, A. McCallum, and F.C.N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML, 2001.
    • (2001) Proc. ICML
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 11
    • 33746100752 scopus 로고    scopus 로고
    • Least-squares policy iteration
    • M. Lagoudakis and R. Parr. Least-squares policy iteration. JMLR, 2003.
    • (2003) JMLR
    • Lagoudakis, M.1    Parr, R.2
  • 12
    • 0001249987 scopus 로고
    • On a measure of the information provided by an experiment
    • Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of Mathematical Statistics, pages 986-1005, 1956.
    • (1956) The Annals of Mathematical Statistics , pp. 986-1005
    • Lindley, D.V.1
  • 14
    • 77956199907 scopus 로고    scopus 로고
    • Designing efficient cascaded classifiers: Tradeoff between accuracy and cost
    • V.C. Raykar, B. Krishnapuram, and S. Yu. Designing efficient cascaded classifiers: tradeoff between accuracy and cost. In SIGKDD, 2010.
    • (2010) SIGKDD
    • Raykar, V.C.1    Krishnapuram, B.2    Yu, S.3
  • 15
    • 84887370243 scopus 로고    scopus 로고
    • MODEC: Multimodal decomposable models for human pose estimation
    • B. Sapp and B. Taskar. MODEC: Multimodal decomposable models for human pose estimation. In CVPR, 2013.
    • (2013) CVPR
    • Sapp, B.1    Taskar, B.2
  • 16
    • 80052890828 scopus 로고    scopus 로고
    • Parsing human motion with stretchable models
    • B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with stretchable models. In CVPR, 2011.
    • (2011) CVPR
    • Sapp, B.1    Weiss, D.2    Taskar, B.3
  • 17
    • 48849117633 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for SVM
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In ICML, 2007.
    • (2007) ICML
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 18
    • 31844442382 scopus 로고    scopus 로고
    • Learning structured prediction models: A large margin approach
    • B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediction models: A large margin approach. In ICML, 2005.
    • (2005) ICML
    • Taskar, B.1    Chatalbashev, V.2    Koller, D.3    Guestrin, C.4
  • 20
    • 84898965088 scopus 로고    scopus 로고
    • Supervised sequential classification under budget constraints
    • K. Trapeznikov and V. Saligrama. Supervised sequential classification under budget constraints. In AISTATS, 2013.
    • (2013) AISTATS
    • Trapeznikov, K.1    Saligrama, V.2
  • 22
    • 84898833558 scopus 로고    scopus 로고
    • Dynamic structured model selection
    • D. Weiss, B. Sapp, and B. Taskar. Dynamic structured model selection. In ICCV, 2013.
    • (2013) ICCV
    • Weiss, D.1    Sapp, B.2    Taskar, B.3
  • 23
    • 80052647964 scopus 로고    scopus 로고
    • Structured prediction cascades
    • D. Weiss and B. Taskar. Structured prediction cascades. In AISTATS, 2010.
    • (2010) AISTATS
    • Weiss, D.1    Taskar, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.