-
1
-
-
33144483155
-
Stable recovery of sparse overcomplete representations in the presence of noise
-
D.L. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. Information Theory, IEEE Transactions on, 52(1):6-18, 2006.
-
(2006)
Information Theory. IEEE Transactions on
, vol.52
, Issue.1
, pp. 6-18
-
-
Donoho, D.L.1
Elad, M.2
Temlyakov, V.N.3
-
2
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96:1348-1360, 2001.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
3
-
-
26844461512
-
Recovery of exact sparse representations in the presence of bounded noise
-
J.J. Fuchs. Recovery of exact sparse representations in the presence of bounded noise. Information Theory, IEEE Transactions on, 51(10):3601-3608, 2005.
-
(2005)
Information Theory IEEE Transactions on
, vol.51
, Issue.10
, pp. 3601-3608
-
-
Fuchs, J.J.1
-
4
-
-
77954095581
-
Spatial Lasso with applications to GIS model selection
-
H.-C. Huang, N.-J. Hsu, D.M. Theobald, and F.J. Breidt. Spatial Lasso with applications to GIS model selection. Journal of Computational and Graphical Statistics, 19(4):963-983, 2010.
-
(2010)
Journal of Computational and Graphical Statistics
, vol.19
, Issue.4
, pp. 963-983
-
-
Huang, H.-C.1
Hsu, N.-J.2
Theobald, D.M.3
Breidt, F.J.4
-
5
-
-
79953195127
-
Variable selection through Correlation Sifting
-
V. Bafna and S.C. Sahinalp, editors, volume 6577 of Lecture Notes in Computer Science, Springer
-
J.C. Huang and N. Jojic. Variable selection through Correlation Sifting. In V. Bafna and S.C. Sahinalp, editors, RECOMB, volume 6577 of Lecture Notes in Computer Science, pages 106-123. Springer, 2011.
-
(2011)
RECOMB
, pp. 106-123
-
-
Huang, J.C.1
Jojic, N.2
-
7
-
-
33745181295
-
Lasso with relaxation
-
Eidgenössische Technische Hochschule, Zürich
-
N. Meinshausen. Lasso with relaxation. Technical Report 129, Eidgenössische Technische Hochschule, Zürich, 2005.
-
(2005)
Technical Report 129
-
-
Meinshausen, N.1
-
8
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the Lasso. Annals of Statistics, 34(3):1436-1462, 2006.
-
(2006)
Annals of Statistics
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
9
-
-
51049112528
-
"Preconditioning" for feature selection and regression in high-dimensional problems
-
D. Paul, E. Bair, T. Hastie, and R. Tibshirani. " Preconditioning" for feature selection and regression in high-dimensional problems. Annals of Statistics, 36(4):1595-1618, 2008.
-
(2008)
Annals of Statistics
, vol.36
, Issue.4
, pp. 1595-1618
-
-
Paul, D.1
Bair, E.2
Hastie, T.3
Tibshirani, R.4
-
12
-
-
65749083666
-
Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming (Lasso)
-
M.J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming (Lasso). IEEE Transactions on Information Theory, 55(5):2183-2202, 2009.
-
(2009)
IEEE Transactions on Information Theory
, vol.55
, Issue.5
, pp. 2183-2202
-
-
Wainwright, M.J.1
|