메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Latent maximum margin clustering

Author keywords

[No Author keywords available]

Indexed keywords

CONVENTIONAL CLUSTERING; LARGE-MARGIN LEARNING; LATENT VARIABLE; MAXIMUM MARGIN; MAXIMUM MARGIN CLUSTERING; NONCONVEX OPTIMIZATION; TAG MODELS; VIDEO CLUSTERING;

EID: 84898934337     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (38)
  • 1
    • 85141266799 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2002.
    • (2002) NIPS
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 2
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 3
    • 71149096870 scopus 로고    scopus 로고
    • Large margin training for hidden Markov models with partially observed states
    • T. M. T. Do and T. Artières. Large margin training for hidden Markov models with partially observed states. In ICML, 2009.
    • (2009) ICML
    • Do, T.M.T.1    Artières, T.2
  • 4
    • 77953224915 scopus 로고    scopus 로고
    • Learning to recognize activities from the wrong view point
    • A. Farhadi and M. K. Tabrizi. Learning to recognize activities from the wrong view point. In ECCV, 2008.
    • (2008) ECCV
    • Farhadi, A.1    Tabrizi, M.K.2
  • 5
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • P. F. Felzenszwalb, D. A. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.
    • (2008) CVPR
    • Felzenszwalb, P.F.1    McAllester, D.A.2    Ramanan, D.3
  • 6
    • 80052899845 scopus 로고    scopus 로고
    • Max-margin clustering: Detecting margins from projections of points on lines
    • R. Gopalan and J. Sankaranarayanan. Max-margin clustering: Detecting margins from projections of points on lines. In CVPR, 2011.
    • (2011) CVPR
    • Gopalan, R.1    Sankaranarayanan, J.2
  • 7
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied Statistics, 28:100-108, 1979.
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 8
    • 84887323899 scopus 로고    scopus 로고
    • Discriminative sub-categorization
    • M. Hoai and A. Zisserman. Discriminative sub-categorization. In CVPR, 2013.
    • (2013) CVPR
    • Hoai, M.1    Zisserman, A.2
  • 9
    • 79959294095 scopus 로고    scopus 로고
    • Hierarchical comments-based clustering
    • C.-F. Hsu, J. Caverlee, and E. Khabiri. Hierarchical comments-based clustering. In SAC, 2011.
    • (2011) SAC
    • Hsu, C.-F.1    Caverlee, J.2    Khabiri, E.3
  • 10
    • 84887479105 scopus 로고    scopus 로고
    • Recognizing complex events using large margin joint low-level event model
    • H. Izadinia and M. Shah. Recognizing complex events using large margin joint low-level event model. In ECCV, 2012.
    • (2012) ECCV
    • Izadinia, H.1    Shah, M.2
  • 12
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. In ICML, 1999.
    • (1999) ICML
    • Joachims, T.1
  • 13
    • 84898426452 scopus 로고    scopus 로고
    • A spatio-temporal descriptor based on 3d-gradients
    • A. Kläser, M. Marszalek, and C. Schmid. A spatio-temporal descriptor based on 3d-gradients. In BMVC, 2008.
    • (2008) BMVC
    • Kläser, A.1    Marszalek, M.2    Schmid, C.3
  • 14
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, 2010.
    • (2010) NIPS
    • Kumar, M.P.1    Packer, B.2    Koller, D.3
  • 17
    • 80052915325 scopus 로고    scopus 로고
    • Recognizing human actions by attributes
    • J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR, 2011.
    • (2011) CVPR
    • Liu, J.1    Kuipers, B.2    Savarese, S.3
  • 18
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, 2001.
    • (2001) NIPS
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 19
    • 84905223557 scopus 로고    scopus 로고
    • TRECVID 2011 - An overview of the goals, tasks, data, evaluation mechanisms and metrics
    • P. Over, G. Awad, J. Fiscus, A. F. Smeaton, W. Kraaij, and G. Quenot. TRECVID 2011 - an overview of the goals, tasks, data, evaluation mechanisms and metrics. In TRECVID, 2011.
    • (2011) TRECVID
    • Over, P.1    Awad, G.2    Fiscus, J.3    Smeaton, A.F.4    Kraaij, W.5    Quenot, G.6
  • 21
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846-850, 1971.
    • (1971) Journal of the American Statistical Association , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 22
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • R. Redner and H. Walker. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2):195-239, 1984.
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.1    Walker, H.2
  • 23
    • 51949084792 scopus 로고    scopus 로고
    • ActionMACH a spatio-temporal maximum average correlation height filter for action recognition
    • M. D. Rodriguez, J. Ahmed, and M. Shah. ActionMACH a spatio-temporal maximum average correlation height filter for action recognition. In CVPR, 2008.
    • (2008) CVPR
    • Rodriguez, M.D.1    Ahmed, J.2    Shah, M.3
  • 24
    • 84866718894 scopus 로고    scopus 로고
    • Action Bank: A high-level representation of activity in video
    • S. Sadanand and J. J. Corso. Action Bank: A high-level representation of activity in video. In CVPR, 2012.
    • (2012) CVPR
    • Sadanand, S.1    Corso, J.J.2
  • 26
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local SVM approach
    • C. Schüldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM approach. In ICPR, 2004.
    • (2004) ICPR
    • Schüldt, C.1    Laptev, I.2    Caputo, B.3
  • 28
    • 84898835023 scopus 로고    scopus 로고
    • Handling uncertain tags in visual recognition
    • A. Vahdat and G. Mori. Handling uncertain tags in visual recognition. In ICCV, 2013.
    • (2013) ICCV
    • Vahdat, A.1    Mori, G.2
  • 29
    • 85075958051 scopus 로고    scopus 로고
    • Generalized maximum margin clustering and unsupervised kernel learning
    • H. Valizadegan and R. Jin. Generalized maximum margin clustering and unsupervised kernel learning. In NIPS, 2006.
    • (2006) NIPS
    • Valizadegan, H.1    Jin, R.2
  • 30
    • 84898973184 scopus 로고    scopus 로고
    • Discovering latent clusters from geotagged beach images
    • Y. Wang and L. Cao. Discovering latent clusters from geotagged beach images. In MMM, 2013.
    • (2013) MMM
    • Wang, Y.1    Cao, L.2
  • 31
    • 70450216856 scopus 로고    scopus 로고
    • Max-margin hidden conditional random fields for human action recognition
    • Y. Wang and G. Mori. Max-margin hidden conditional random fields for human action recognition. In CVPR, 2009.
    • (2009) CVPR
    • Wang, Y.1    Mori, G.2
  • 33
    • 56449089515 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised multi-class support vector machines
    • L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector machines. In AAAI, 2005.
    • (2005) AAAI
    • Xu, L.1    Schuurmans, D.2
  • 34
    • 80052898069 scopus 로고    scopus 로고
    • Discriminative tag learning on YouTube videos with latent sub-tags
    • W. Yang and G. Toderici. Discriminative tag learning on YouTube videos with latent sub-tags. In CVPR, 2011.
    • (2011) CVPR
    • Yang, W.1    Toderici, G.2
  • 35
    • 84877737125 scopus 로고    scopus 로고
    • Kernel latent SVM for visual recognition
    • W. Yang, Y. Wang, A. Vahdat, and G. Mori. Kernel latent SVM for visual recognition. In NIPS, 2012.
    • (2012) NIPS
    • Yang, W.1    Wang, Y.2    Vahdat, A.3    Mori, G.4
  • 36
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural SVMs with latent variables
    • C.-N. J. Yu and T. Joachims. Learning structural SVMs with latent variables. In ICML, 2009.
    • (2009) ICML
    • Yu, C.-N.J.1    Joachims, T.2
  • 37
    • 56449109295 scopus 로고    scopus 로고
    • Maximum margin clustering made practical
    • K. Zhang, I. W. Tsang, and J. T. Kwok. Maximum margin clustering made practical. In ICML, 2007.
    • (2007) ICML
    • Zhang, K.1    Tsang, I.W.2    Kwok, T.J.3
  • 38
    • 56449122823 scopus 로고    scopus 로고
    • Efficient multiclass maximum margin clustering
    • B. Zhao, F. Wang, and C. Zhang. Efficient multiclass maximum margin clustering. In ICML, 2008.
    • (2008) ICML
    • Zhao, B.1    Wang, F.2    Zhang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.