-
1
-
-
84866657764
-
Slic superpixels compared to state-of-the-art superpixel methods
-
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. S̈usstrunk. Slic superpixels compared to state-of-the-art superpixel methods. PAMI, 2012.
-
(2012)
PAMI
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
S̈usstrunk, S.6
-
2
-
-
84855358881
-
Harmony potentials-fusing global and local scale for semantic image segmentation
-
X. Boix, J. M. Gonfaus, J. van de Weijer, A. D. Bagdanov, J. Serrat, and J. Gonz̀alez. Harmony potentials-fusing global and local scale for semantic image segmentation. IJCV, 2012.
-
(2012)
IJCV
-
-
Boix, X.1
Gonfaus, J.M.2
Weijer De J.Van3
Bagdanov, A.D.4
Serrat, J.5
Gonz̀alez, J.6
-
3
-
-
4344598245
-
An experimental comparison of mincut/max-flow algorithms for energy minimization in vision
-
Y. Boykov and V. Kolmogorov. An experimental comparison of mincut/max-flow algorithms for energy minimization in vision. PAMI, 2004.
-
(2004)
PAMI
-
-
Boykov, Y.1
Kolmogorov, V.2
-
4
-
-
84860611692
-
An efficient approach to semantic segmentation
-
G. Csurka and F. Perronnin. An efficient approach to semantic segmentation. IJCV, 2010.
-
(2010)
IJCV
-
-
Csurka, G.1
Perronnin, F.2
-
6
-
-
85078986900
-
Class segmentation and object localization with superpixel neighborhoods
-
B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation and object localization with superpixel neighborhoods. In ICCV, 2009.
-
(2009)
ICCV
-
-
Fulkerson, B.1
Vedaldi, A.2
Soatto, S.3
-
7
-
-
52449123642
-
Multi-class segmentation with relative location prior
-
S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller. Multi-class segmentation with relative location prior. IJCV, 2008.
-
(2008)
IJCV
-
-
Gould, S.1
Rodgers, J.2
Cohen, D.3
Elidan, G.4
Koller, D.5
-
8
-
-
70450182221
-
Efficient scale space auto-context for image segmentation and labeling
-
J. Jiang and Z. Tu. Efficient scale space auto-context for image segmentation and labeling. In CVPR, 2009.
-
(2009)
CVPR
-
-
Jiang, J.1
Tu, Z.2
-
9
-
-
61349174704
-
Robust higher order potentials for enforcing label consistency
-
P. Kohli, L. Ladicky, and P. Torr. Robust higher order potentials for enforcing label consistency. IJCV, 2009.
-
(2009)
IJCV
-
-
Kohli, P.1
Ladicky, L.2
Torr, P.3
-
10
-
-
56449097215
-
On optimality properties of tree-reweighted message-passing
-
V. Kolmogorov and M. J. Wainwright. On optimality properties of tree-reweighted message-passing. In UAI, 2005.
-
(2005)
UAI
-
-
Kolmogorov, V.1
Wainwright, M.J.2
-
11
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
-
(2001)
ICML
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
12
-
-
84863059942
-
Are spatial and global constraints really necessary for segmentation
-
A. Lucchi, Y. Li, X. Boix, K. Smith, and P. Fua. Are spatial and global constraints really necessary for segmentation In ICCV, 2011.
-
(2011)
ICCV
-
-
Lucchi, A.1
Li, Y.2
Boix, X.3
Smith, K.4
Fua, P.5
-
13
-
-
84856631928
-
Object detection and segmentation from joint embedding of parts and pixels
-
M. Maire, S. X. Yu, and P. Perona. Object detection and segmentation from joint embedding of parts and pixels. In ICCV, 2011.
-
(2011)
ICCV
-
-
Maire, M.1
Yu, S.X.2
Perona, P.3
-
15
-
-
77953187441
-
Object recognition by integrating multiple image segmentations
-
C. Pantofaru, C. Schmid, and M. Hebert. Object recognition by integrating multiple image segmentations. In ECCV, 2008.
-
(2008)
ECCV
-
-
Pantofaru, C.1
Schmid, C.2
Hebert, M.3
-
16
-
-
84856654560
-
Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
-
G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models. In ICCV, 2011.
-
(2011)
ICCV
-
-
Papandreou, G.1
Yuille, A.2
-
17
-
-
71149101357
-
Multi-class image segmentation using conditional random fields and global classification
-
N. Plath, M. Toussaint, and S. Nakajima. Multi-class image segmentation using conditional random fields and global classification. In ICML, 2009.
-
(2009)
ICML
-
-
Plath, N.1
Toussaint, M.2
Nakajima, S.3
-
18
-
-
68949137209
-
Active learning literature survey
-
University of WisconsinMadison
-
B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648. University of WisconsinMadison, 2009.
-
(2009)
Computer Sciences Technical Report 1648
-
-
Settles, B.1
-
19
-
-
58149151266
-
Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
-
J. Shotton, J.Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, 2009.
-
(2009)
IJCV
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
20
-
-
84867126989
-
Randomized optimum models for structured prediction
-
D. Tarlow, R. Adams, and R. Zemel. Randomized optimum models for structured prediction. In AISTATS, 2012.
-
(2012)
Aistats
-
-
Tarlow, D.1
Adams, R.2
Zemel, R.3
-
21
-
-
58349114205
-
Scene segmentation with conditional random fields learned from partially labeled images
-
J. Verbeek and B. Triggs. Scene segmentation with conditional random fields learned from partially labeled images. In NIPS, 2007.
-
(2007)
NIPS
-
-
Verbeek, J.1
Triggs, B.2
-
22
-
-
84866706762
-
Active learning for semantic segmentation with expected change
-
A. Vezhnevets, J. M. Buhmann, and V. Ferrari. Active learning for semantic segmentation with expected change. In CVPR, 2012.
-
(2012)
CVPR
-
-
Vezhnevets, A.1
Buhmann, J.M.2
Ferrari, V.3
|