메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2312-2319

Active MAP inference in CRFs for efficient semantic segmentation

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE SEGMENTATION; SEMANTICS;

EID: 84898811016     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.287     Document Type: Conference Paper
Times cited : (24)

References (23)
  • 3
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of mincut/max-flow algorithms for energy minimization in vision
    • Y. Boykov and V. Kolmogorov. An experimental comparison of mincut/max-flow algorithms for energy minimization in vision. PAMI, 2004.
    • (2004) PAMI
    • Boykov, Y.1    Kolmogorov, V.2
  • 4
    • 84860611692 scopus 로고    scopus 로고
    • An efficient approach to semantic segmentation
    • G. Csurka and F. Perronnin. An efficient approach to semantic segmentation. IJCV, 2010.
    • (2010) IJCV
    • Csurka, G.1    Perronnin, F.2
  • 6
    • 85078986900 scopus 로고    scopus 로고
    • Class segmentation and object localization with superpixel neighborhoods
    • B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation and object localization with superpixel neighborhoods. In ICCV, 2009.
    • (2009) ICCV
    • Fulkerson, B.1    Vedaldi, A.2    Soatto, S.3
  • 8
    • 70450182221 scopus 로고    scopus 로고
    • Efficient scale space auto-context for image segmentation and labeling
    • J. Jiang and Z. Tu. Efficient scale space auto-context for image segmentation and labeling. In CVPR, 2009.
    • (2009) CVPR
    • Jiang, J.1    Tu, Z.2
  • 9
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • P. Kohli, L. Ladicky, and P. Torr. Robust higher order potentials for enforcing label consistency. IJCV, 2009.
    • (2009) IJCV
    • Kohli, P.1    Ladicky, L.2    Torr, P.3
  • 10
    • 56449097215 scopus 로고    scopus 로고
    • On optimality properties of tree-reweighted message-passing
    • V. Kolmogorov and M. J. Wainwright. On optimality properties of tree-reweighted message-passing. In UAI, 2005.
    • (2005) UAI
    • Kolmogorov, V.1    Wainwright, M.J.2
  • 11
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 12
    • 84863059942 scopus 로고    scopus 로고
    • Are spatial and global constraints really necessary for segmentation
    • A. Lucchi, Y. Li, X. Boix, K. Smith, and P. Fua. Are spatial and global constraints really necessary for segmentation In ICCV, 2011.
    • (2011) ICCV
    • Lucchi, A.1    Li, Y.2    Boix, X.3    Smith, K.4    Fua, P.5
  • 13
    • 84856631928 scopus 로고    scopus 로고
    • Object detection and segmentation from joint embedding of parts and pixels
    • M. Maire, S. X. Yu, and P. Perona. Object detection and segmentation from joint embedding of parts and pixels. In ICCV, 2011.
    • (2011) ICCV
    • Maire, M.1    Yu, S.X.2    Perona, P.3
  • 15
    • 77953187441 scopus 로고    scopus 로고
    • Object recognition by integrating multiple image segmentations
    • C. Pantofaru, C. Schmid, and M. Hebert. Object recognition by integrating multiple image segmentations. In ECCV, 2008.
    • (2008) ECCV
    • Pantofaru, C.1    Schmid, C.2    Hebert, M.3
  • 16
    • 84856654560 scopus 로고    scopus 로고
    • Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models
    • G. Papandreou and A. Yuille. Perturb-and-map random fields: Using discrete optimization to learn and sample from energy models. In ICCV, 2011.
    • (2011) ICCV
    • Papandreou, G.1    Yuille, A.2
  • 17
    • 71149101357 scopus 로고    scopus 로고
    • Multi-class image segmentation using conditional random fields and global classification
    • N. Plath, M. Toussaint, and S. Nakajima. Multi-class image segmentation using conditional random fields and global classification. In ICML, 2009.
    • (2009) ICML
    • Plath, N.1    Toussaint, M.2    Nakajima, S.3
  • 18
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • University of WisconsinMadison
    • B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648. University of WisconsinMadison, 2009.
    • (2009) Computer Sciences Technical Report 1648
    • Settles, B.1
  • 19
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • J. Shotton, J.Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, 2009.
    • (2009) IJCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 20
    • 84867126989 scopus 로고    scopus 로고
    • Randomized optimum models for structured prediction
    • D. Tarlow, R. Adams, and R. Zemel. Randomized optimum models for structured prediction. In AISTATS, 2012.
    • (2012) Aistats
    • Tarlow, D.1    Adams, R.2    Zemel, R.3
  • 21
    • 58349114205 scopus 로고    scopus 로고
    • Scene segmentation with conditional random fields learned from partially labeled images
    • J. Verbeek and B. Triggs. Scene segmentation with conditional random fields learned from partially labeled images. In NIPS, 2007.
    • (2007) NIPS
    • Verbeek, J.1    Triggs, B.2
  • 22
    • 84866706762 scopus 로고    scopus 로고
    • Active learning for semantic segmentation with expected change
    • A. Vezhnevets, J. M. Buhmann, and V. Ferrari. Active learning for semantic segmentation with expected change. In CVPR, 2012.
    • (2012) CVPR
    • Vezhnevets, A.1    Buhmann, J.M.2    Ferrari, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.