-
1
-
-
24644490260
-
Discriminative learning of markov random fields for segmentation of 3D scan data
-
D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, and A. Y. Ng. Discriminative learning of Markov Random Fields for segmentation of 3D scan data. In CVPR, 2005.
-
(2005)
CVPR
-
-
Anguelov, D.1
Taskar, B.2
Chatalbashev, V.3
Koller, D.4
Gupta, D.5
Heitz, G.6
Ng, A.Y.7
-
2
-
-
84898420767
-
Generic cuts: An efficient algorithm for optimal inference in higher order MRF-MAP
-
C. Arora, S. Banerjee, P. Kalra, and S. N. Maheshwari. Generic cuts: an efficient algorithm for optimal inference in higher order MRF-MAP. In ECCV, 2012.
-
(2012)
ECCV
-
-
Arora, C.1
Banerjee, S.2
Kalra, P.3
Maheshwari, S.N.4
-
4
-
-
4344598245
-
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
-
Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. TPAMI, 26(9), 2004.
-
(2004)
TPAMI
, vol.26
, Issue.9
-
-
Boykov, Y.1
Kolmogorov, V.2
-
5
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. TPAMI, 23(11), 2001.
-
(2001)
TPAMI
, vol.23
, Issue.11
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
6
-
-
0001034606
-
A min-max relation for submodular functions on graphs
-
J. Edmonds and R. Giles. A min-max relation for submodular functions on graphs. Annals of Discrete Mathematics, 1:185-204, 1977.
-
(1977)
Annals of Discrete Mathematics
, vol.1
, pp. 185-204
-
-
Edmonds, J.1
Giles, R.2
-
7
-
-
56449113929
-
Training structural SVMs when exact inference is intractable
-
T. Finley and T. Joachims. Training structural SVMs when exact inference is intractable. In ICML, 2008.
-
(2008)
ICML
-
-
Finley, T.1
Joachims, T.2
-
8
-
-
84856631976
-
A graph cut algorithm for higher-order Markov Random Fields
-
A. Fix, A. Gruber, E. Boros, and R. Zabih. A graph cut algorithm for higher-order Markov Random Fields. In ICCV, 2011.
-
(2011)
ICCV
-
-
Fix, A.1
Gruber, A.2
Boros, E.3
Zabih, R.4
-
9
-
-
38949112095
-
Discriminative learning of maxsum classifiers
-
V. Franc, B. Savchynskyy. Discriminative learning of maxsum classifiers. In JMLR, 2008.
-
(2008)
JMLR
-
-
Franc, V.1
Savchynskyy, B.2
-
10
-
-
0039334462
-
A push/relabel framework for submodular flows and its refinement for 0-1 submodular flows
-
S. Fujishige and X. Zhang. A push/relabel framework for submodular flows and its refinement for 0-1 submodular flows. Optimization, 38(2):133-154, 1996.
-
(1996)
Optimization
, vol.38
, Issue.2
, pp. 133-154
-
-
Fujishige, S.1
Zhang, X.2
-
11
-
-
84951122954
-
Maximum flows by incremental breadth-first search
-
A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan, and R. F. Werneck. Maximum flows by incremental breadth-first search. In European Symposium on Algorithms, 2011.
-
(2011)
European Symposium on Algorithms
-
-
Goldberg, A.V.1
Hed, S.2
Kaplan, H.3
Tarjan, R.E.4
Werneck, R.F.5
-
12
-
-
77955994545
-
Geodesic star convexity for interactive image segmentation
-
V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman. Geodesic star convexity for interactive image segmentation. In CVPR, 2010.
-
(2010)
CVPR
-
-
Gulshan, V.1
Rother, C.2
Criminisi, A.3
Blake, A.4
Zisserman, A.5
-
13
-
-
5044223520
-
Multiscale conditional random fields for image labeling
-
X. He, R. S. Zemel, and M. A. Carreira-Perpiñ́an. Multiscale conditional random fields for image labeling. In CVPR, 2004.
-
(2004)
CVPR
-
-
He, X.1
Zemel, R.S.2
Carreira-Perpiñ́an, M.A.3
-
14
-
-
79955471099
-
Transformation of general binary MRF minimization to the first order case
-
H. Ishikawa. Transformation of general binary MRF minimization to the first order case. TPAMI, 33(6), 2010.
-
(2010)
TPAMI
, vol.33
, Issue.6
-
-
Ishikawa, H.1
-
16
-
-
67651002631
-
P3 and beyond: Move making algorithms for solving higher order functions
-
P. Kohli, M. P. Kumar, and P. H. Torr. P3 and beyond: Move making algorithms for solving higher order functions. TPAMI, 31(9), 2008.
-
(2008)
TPAMI
, vol.31
, Issue.9
-
-
Kohli, P.1
Kumar, M.P.2
Torr, P.H.3
-
17
-
-
61349174704
-
Robust higher order potentials for enforcing label consistency
-
P. Kohli, L. Ladicky, and P. Torr. Robust higher order potentials for enforcing label consistency. IJCV, 82, 2009.
-
(2009)
IJCV
, pp. 82
-
-
Kohli, P.1
Ladicky, L.2
Torr, P.3
-
18
-
-
84864761190
-
Minimizing a sum of submodular functions
-
Oct.
-
V. Kolmogorov. Minimizing a sum of submodular functions. Discrete Appl. Math., 160(15):2246-2258, Oct. 2012.
-
(2012)
Discrete Appl. Math
, vol.160
, Issue.15
, pp. 2246-2258
-
-
Kolmogorov, V.1
-
19
-
-
0742286180
-
What energy functions can be minimized via graph cuts?
-
V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? TPAMI, 26(2), 2004.
-
(2004)
TPAMI
, vol.26
, Issue.2
-
-
Kolmogorov, V.1
Zabih, R.2
-
21
-
-
77954004426
-
Graphcut textures: Image and video synthesis using graph cuts
-
V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: Image and video synthesis using graph cuts. SIGGRAPH, 2003.
-
(2003)
SIGGRAPH
-
-
Kwatra, V.1
Schodl, A.2
Essa, I.3
Turk, G.4
Bobick, A.5
-
22
-
-
77953225585
-
Associative hierarchical CRFs for object class image segmentation
-
L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical CRFs for object class image segmentation. In ICCV, 2009.
-
(2009)
ICCV
-
-
Ladicky, L.1
Russell, C.2
Kohli, P.3
Torr, P.H.S.4
-
23
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
-
(2001)
ICML
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
24
-
-
84886074716
-
Learning mixtures of submodular shells with application to document summarization
-
H. Lin and J. Bilmes. Learning mixtures of submodular shells with application to document summarization. In UAI, 2012.
-
(2012)
UAI
-
-
Lin, H.1
Bilmes, J.2
-
25
-
-
70450162267
-
Contextual classification with functional max-margin Markov networks
-
D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert. Contextual classification with functional max-margin Markov networks. In CVPR, 2009.
-
(2009)
CVPR
-
-
Munoz, D.1
Bagnell, J.A.2
Vandapel, N.3
Hebert, M.4
-
26
-
-
58149485960
-
A faster strongly polynomial time algorithm for submodular function minimization
-
Jan.
-
J. B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization. Math. Program., 118(2):237-251, Jan. 2009.
-
(2009)
Math. Program
, vol.118
, Issue.2
, pp. 237-251
-
-
Orlin, J.B.1
-
27
-
-
60449120149
-
Fields of experts
-
S, Roth and M, Black. Fields of experts. IJCV, 82, 2009.
-
(2009)
IJCV
, pp. 82
-
-
Roth, S.1
Black, M.2
-
28
-
-
84877632511
-
GrabCut-interactive foreground extraction using iterated graph cuts
-
C. Rother, V. Kolmogorov, and A. Blake. "GrabCut"-interactive foreground extraction using iterated graph cuts. SIGGRAPH, 23(3):309-314, 2004.
-
(2004)
SIGGRAPH
, vol.23
, Issue.3
, pp. 309-314
-
-
Rother, C.1
Kolmogorov, V.2
Blake, A.3
-
29
-
-
84898827859
-
Large-margin learning of submodular summarization models
-
R. Sipos, P. Shivaswamy, and T. Joachims. Large-margin learning of submodular summarization models. In EACL, 2012.
-
(2012)
EACL
-
-
Sipos, R.1
Shivaswamy, P.2
Joachims, T.3
-
34
-
-
14344250451
-
Support vector machine learning for interdependent and structured output spaces
-
I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
-
(2004)
ICML
-
-
Tsochantaridis, I.1
Hofmann, T.2
Joachims, T.3
Altun, Y.4
-
35
-
-
56449130129
-
Predicting diverse subsets using structural SVMs
-
Y. Yue and T. Joachims. Predicting diverse subsets using structural SVMs. In ICML, 2008.
-
(2008)
ICML
-
-
Yue, Y.1
Joachims, T.2
|