메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3104-3111

Structured learning of sum-of-submodular higher order energy functions

Author keywords

Graph cuts; Max flow; Structured prediction

Indexed keywords

GRAPHIC METHODS; POLYNOMIAL APPROXIMATION; SYSTEMS ENGINEERING;

EID: 84898794807     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.385     Document Type: Conference Paper
Times cited : (23)

References (35)
  • 2
    • 84898420767 scopus 로고    scopus 로고
    • Generic cuts: An efficient algorithm for optimal inference in higher order MRF-MAP
    • C. Arora, S. Banerjee, P. Kalra, and S. N. Maheshwari. Generic cuts: an efficient algorithm for optimal inference in higher order MRF-MAP. In ECCV, 2012.
    • (2012) ECCV
    • Arora, C.1    Banerjee, S.2    Kalra, P.3    Maheshwari, S.N.4
  • 3
    • 79959757277 scopus 로고    scopus 로고
    • Learning submodular functions
    • M.-F. Balcan and N. J. A. Harvey. Learning submodular functions. In STOC, 2011.
    • (2011) STOC
    • Balcan, M.-F.1    Harvey, N.J.A.2
  • 4
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
    • Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. TPAMI, 26(9), 2004.
    • (2004) TPAMI , vol.26 , Issue.9
    • Boykov, Y.1    Kolmogorov, V.2
  • 5
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. TPAMI, 23(11), 2001.
    • (2001) TPAMI , vol.23 , Issue.11
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 6
    • 0001034606 scopus 로고
    • A min-max relation for submodular functions on graphs
    • J. Edmonds and R. Giles. A min-max relation for submodular functions on graphs. Annals of Discrete Mathematics, 1:185-204, 1977.
    • (1977) Annals of Discrete Mathematics , vol.1 , pp. 185-204
    • Edmonds, J.1    Giles, R.2
  • 7
    • 56449113929 scopus 로고    scopus 로고
    • Training structural SVMs when exact inference is intractable
    • T. Finley and T. Joachims. Training structural SVMs when exact inference is intractable. In ICML, 2008.
    • (2008) ICML
    • Finley, T.1    Joachims, T.2
  • 8
    • 84856631976 scopus 로고    scopus 로고
    • A graph cut algorithm for higher-order Markov Random Fields
    • A. Fix, A. Gruber, E. Boros, and R. Zabih. A graph cut algorithm for higher-order Markov Random Fields. In ICCV, 2011.
    • (2011) ICCV
    • Fix, A.1    Gruber, A.2    Boros, E.3    Zabih, R.4
  • 9
    • 38949112095 scopus 로고    scopus 로고
    • Discriminative learning of maxsum classifiers
    • V. Franc, B. Savchynskyy. Discriminative learning of maxsum classifiers. In JMLR, 2008.
    • (2008) JMLR
    • Franc, V.1    Savchynskyy, B.2
  • 10
    • 0039334462 scopus 로고    scopus 로고
    • A push/relabel framework for submodular flows and its refinement for 0-1 submodular flows
    • S. Fujishige and X. Zhang. A push/relabel framework for submodular flows and its refinement for 0-1 submodular flows. Optimization, 38(2):133-154, 1996.
    • (1996) Optimization , vol.38 , Issue.2 , pp. 133-154
    • Fujishige, S.1    Zhang, X.2
  • 13
    • 5044223520 scopus 로고    scopus 로고
    • Multiscale conditional random fields for image labeling
    • X. He, R. S. Zemel, and M. A. Carreira-Perpiñ́an. Multiscale conditional random fields for image labeling. In CVPR, 2004.
    • (2004) CVPR
    • He, X.1    Zemel, R.S.2    Carreira-Perpiñ́an, M.A.3
  • 14
    • 79955471099 scopus 로고    scopus 로고
    • Transformation of general binary MRF minimization to the first order case
    • H. Ishikawa. Transformation of general binary MRF minimization to the first order case. TPAMI, 33(6), 2010.
    • (2010) TPAMI , vol.33 , Issue.6
    • Ishikawa, H.1
  • 15
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training of structural SVMs. Machine Learning, 77(1), 2009.
    • (2009) Machine Learning , vol.77 , Issue.1
    • Joachims, T.1    Finley, T.2    Yu, C.-N.3
  • 16
    • 67651002631 scopus 로고    scopus 로고
    • P3 and beyond: Move making algorithms for solving higher order functions
    • P. Kohli, M. P. Kumar, and P. H. Torr. P3 and beyond: Move making algorithms for solving higher order functions. TPAMI, 31(9), 2008.
    • (2008) TPAMI , vol.31 , Issue.9
    • Kohli, P.1    Kumar, M.P.2    Torr, P.H.3
  • 17
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • P. Kohli, L. Ladicky, and P. Torr. Robust higher order potentials for enforcing label consistency. IJCV, 82, 2009.
    • (2009) IJCV , pp. 82
    • Kohli, P.1    Ladicky, L.2    Torr, P.3
  • 18
    • 84864761190 scopus 로고    scopus 로고
    • Minimizing a sum of submodular functions
    • Oct.
    • V. Kolmogorov. Minimizing a sum of submodular functions. Discrete Appl. Math., 160(15):2246-2258, Oct. 2012.
    • (2012) Discrete Appl. Math , vol.160 , Issue.15 , pp. 2246-2258
    • Kolmogorov, V.1
  • 19
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? TPAMI, 26(2), 2004.
    • (2004) TPAMI , vol.26 , Issue.2
    • Kolmogorov, V.1    Zabih, R.2
  • 20
    • 85162558717 scopus 로고    scopus 로고
    • Semantic labeling of 3D point clouds for indoor scenes
    • H. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic labeling of 3D point clouds for indoor scenes. In NIPS, 2011.
    • (2011) NIPS
    • Koppula, H.1    Anand, A.2    Joachims, T.3    Saxena, A.4
  • 21
    • 77954004426 scopus 로고    scopus 로고
    • Graphcut textures: Image and video synthesis using graph cuts
    • V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: Image and video synthesis using graph cuts. SIGGRAPH, 2003.
    • (2003) SIGGRAPH
    • Kwatra, V.1    Schodl, A.2    Essa, I.3    Turk, G.4    Bobick, A.5
  • 22
    • 77953225585 scopus 로고    scopus 로고
    • Associative hierarchical CRFs for object class image segmentation
    • L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical CRFs for object class image segmentation. In ICCV, 2009.
    • (2009) ICCV
    • Ladicky, L.1    Russell, C.2    Kohli, P.3    Torr, P.H.S.4
  • 23
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 24
    • 84886074716 scopus 로고    scopus 로고
    • Learning mixtures of submodular shells with application to document summarization
    • H. Lin and J. Bilmes. Learning mixtures of submodular shells with application to document summarization. In UAI, 2012.
    • (2012) UAI
    • Lin, H.1    Bilmes, J.2
  • 25
    • 70450162267 scopus 로고    scopus 로고
    • Contextual classification with functional max-margin Markov networks
    • D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert. Contextual classification with functional max-margin Markov networks. In CVPR, 2009.
    • (2009) CVPR
    • Munoz, D.1    Bagnell, J.A.2    Vandapel, N.3    Hebert, M.4
  • 26
    • 58149485960 scopus 로고    scopus 로고
    • A faster strongly polynomial time algorithm for submodular function minimization
    • Jan.
    • J. B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization. Math. Program., 118(2):237-251, Jan. 2009.
    • (2009) Math. Program , vol.118 , Issue.2 , pp. 237-251
    • Orlin, J.B.1
  • 27
    • 60449120149 scopus 로고    scopus 로고
    • Fields of experts
    • S, Roth and M, Black. Fields of experts. IJCV, 82, 2009.
    • (2009) IJCV , pp. 82
    • Roth, S.1    Black, M.2
  • 28
    • 84877632511 scopus 로고    scopus 로고
    • GrabCut-interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. "GrabCut"-interactive foreground extraction using iterated graph cuts. SIGGRAPH, 23(3):309-314, 2004.
    • (2004) SIGGRAPH , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 29
    • 84898827859 scopus 로고    scopus 로고
    • Large-margin learning of submodular summarization models
    • R. Sipos, P. Shivaswamy, and T. Joachims. Large-margin learning of submodular summarization models. In EACL, 2012.
    • (2012) EACL
    • Sipos, R.1    Shivaswamy, P.2    Joachims, T.3
  • 30
    • 70450204874 scopus 로고    scopus 로고
    • Learning CRFs using graph cuts
    • M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph cuts. In ECCV, 2008.
    • (2008) ECCV
    • Szummer, M.1    Kohli, P.2    Hoiem, D.3
  • 34
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 35
    • 56449130129 scopus 로고    scopus 로고
    • Predicting diverse subsets using structural SVMs
    • Y. Yue and T. Joachims. Predicting diverse subsets using structural SVMs. In ICML, 2008.
    • (2008) ICML
    • Yue, Y.1    Joachims, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.