메뉴 건너뛰기




Volumn , Issue , 2013, Pages 161-168

Topology-constrained layered tracking with latent flow

Author keywords

flow; layers; topology; tracking

Indexed keywords

ALGORITHMS; COMPUTER VISION; SURFACE DISCHARGES;

EID: 84898769650     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.27     Document Type: Conference Paper
Times cited : (19)

References (33)
  • 2
    • 0022605734 scopus 로고
    • Estimation of object motion parameters from noisy images
    • Jan
    • T. J. Broida and R. Chellappa. Estimation of object motion parameters from noisy images. IEEE Trans. Pattern Anal. Mach. Intell., 8(1):90-99, Jan. 1986.
    • (1986) IEEE Trans. Pattern Anal. Mach. Intell. , vol.8 , Issue.1 , pp. 90-99
    • Broida, T.J.1    Chellappa, R.2
  • 3
    • 80052912117 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, 2010.
    • (2010) ECCV
    • Brox, T.1    Malik, J.2
  • 4
    • 79551562584 scopus 로고    scopus 로고
    • Large displacement optical flow: Descriptor matching in variational motion estimation
    • T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell., pages 500-513, 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , pp. 500-513
    • Brox, T.1    Malik, J.2
  • 5
    • 84875838166 scopus 로고    scopus 로고
    • Efficient topology-controlled sampling of implicit shapes
    • J. Chang and J. W. Fisher III. Efficient topology-controlled sampling of implicit shapes. In ICIP, 2012.
    • (2012) ICIP
    • Chang, J.1    Fisher III, J.W.2
  • 6
    • 84890095838 scopus 로고    scopus 로고
    • Learning and predicting moving object trajectory: A piecewise trajectory segment approach
    • P. Y. Choi and M. Hebert. Learning and predicting moving object trajectory: a piecewise trajectory segment approach. Technical report, Robotics Institute, 2006.
    • (2006) Technical Report Robotics Institute
    • Choi, P.Y.1    Hebert, M.2
  • 7
    • 0034857313 scopus 로고    scopus 로고
    • People tracking using hybrid monte carlo filtering
    • K. Choo and D. Fleet. People tracking using hybrid monte carlo filtering. In ICCV, 2001.
    • (2001) ICCV
    • Choo, K.1    Fleet, D.2
  • 10
    • 80052870092 scopus 로고    scopus 로고
    • Detection free tracking: Exploiting motion and topology for segmenting and tracking under entanglement
    • K. Fragkiadaki and J. Shi. Detection free tracking: Exploiting motion and topology for segmenting and tracking under entanglement. In CVPR, 2011.
    • (2011) CVPR
    • Fragkiadaki, K.1    Shi, J.2
  • 11
    • 77955986879 scopus 로고    scopus 로고
    • Efficient hierarchical graph based video segmentation
    • M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph based video segmentation. In CVPR, 2010.
    • (2010) CVPR
    • Grundmann, M.1    Kwatra, V.2    Han, M.3    Essa, I.4
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97-109, 1970.
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 14
    • 0032309419 scopus 로고    scopus 로고
    • A mixed-state condensation tracker with automatic model-switching
    • M. Isard and A. Blake. A mixed-state condensation tracker with automatic model-switching. In ICCV, 1998.
    • (1998) ICCV
    • Isard, M.1    Blake, A.2
  • 15
    • 0035686705 scopus 로고    scopus 로고
    • Learning flexible sprites in video layers
    • N. Jojic and B. J. Frey. Learning flexible sprites in video layers. In CVPR, 2001.
    • (2001) CVPR
    • Jojic, N.1    Frey, B.J.2
  • 16
    • 84863025459 scopus 로고    scopus 로고
    • Gaussian process regression flow for analysis of motion trajectories
    • K. Kim, D. Lee, and I. Essa. Gaussian process regression flow for analysis of motion trajectories. In ICCV, 2011.
    • (2011) ICCV
    • Kim, K.1    Lee, D.2    Essa, I.3
  • 18
    • 84863045576 scopus 로고    scopus 로고
    • Key-segments for video object segmentation
    • Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In ICCV, 2011.
    • (2011) ICCV
    • Lee, Y.J.1    Kim, J.2    Grauman, K.3
  • 21
    • 84866714644 scopus 로고    scopus 로고
    • Maximum weight cliques with mutex constraints for video object segmentation
    • T. Ma and L. Latecki. Maximum weight cliques with mutex constraints for video object segmentation. In CVPR, 2012.
    • (2012) CVPR
    • Ma, T.1    Latecki, L.2
  • 23
    • 34247392339 scopus 로고    scopus 로고
    • A generic framework for tracking using particle filter with dynamic shape prior
    • May
    • Y. Rathi, N. Vaswani, and A. Tannenbaum. A generic framework for tracking using particle filter with dynamic shape prior. IEEE Trans. on Image Proc., May 2007.
    • (2007) IEEE Trans. on Image Proc
    • Rathi, Y.1    Vaswani, N.2    Tannenbaum, A.3
  • 24
    • 77649339260 scopus 로고    scopus 로고
    • Multiview segmentation and tracking of dynamic occluding layers
    • I. Reid and K. Connor. Multiview segmentation and tracking of dynamic occluding layers. Image and Vision Computing, 2010.
    • (2010) Image and Vision Computing
    • Reid, I.1    Connor, K.2
  • 25
    • 24644509016 scopus 로고    scopus 로고
    • Real-time tracking using level sets
    • Y. Shi and W. Karl. Real-time tracking using level sets. In CVPR, 2005.
    • (2005) CVPR
    • Shi, Y.1    Karl, W.2
  • 26
    • 0000997747 scopus 로고
    • Spline smoothing: The equivalent variable kernel method
    • B.W. Silverman. Spline smoothing: The equivalent variable kernel method. In Annals of Statistics, 1984.
    • (1984) Annals of Statistics
    • Silverman, B.W.1
  • 27
    • 84866657285 scopus 로고    scopus 로고
    • Layered segmentation and optical flow estimation over time
    • D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. In CVPR, 2012.
    • (2012) CVPR
    • Sun, D.1    Sudderth, E.2    Black, M.3
  • 28
    • 85161961413 scopus 로고    scopus 로고
    • Layered image motion with explicit occlusions, temporal consistency, and depth ordering
    • D. Sun, E. Sudderth, and M. J. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. In NIPS, 2010.
    • (2010) NIPS
    • Sun, D.1    Sudderth, E.2    Black, M.J.3
  • 29
    • 84898465039 scopus 로고    scopus 로고
    • Motion coherent tracking with multi-label mrf optimization
    • D. Tsai, M. Flagg, and J. M.Rehg. Motion coherent tracking with multi-label mrf optimization. In BMVC, 2010.
    • (2010) BMVC
    • Tsai, D.1    Flagg, M.2    Rehg, J.M.3
  • 30
    • 33845583192 scopus 로고    scopus 로고
    • 3d people tracking with gaussian process dynamical models
    • R. Urtasun, D. Fleet, and P. Fua. 3d people tracking with gaussian process dynamical models. In CVPR, 2006.
    • (2006) CVPR
    • Urtasun, R.1    Fleet, D.2    Fua, P.3
  • 32
    • 0030683247 scopus 로고    scopus 로고
    • Smoothness in layers: Motion segmentation using nonparametric mixture estimation
    • Y. Weiss. Smoothness in layers: Motion segmentation using nonparametric mixture estimation. In CVPR, 1997.
    • (1997) CVPR
    • Weiss, Y.1
  • 33
    • 0344551865 scopus 로고    scopus 로고
    • Improved fast gauss transform and efficient kernel density estimation
    • C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis. Improved fast gauss transform and efficient kernel density estimation. In ICCV, 2003.
    • (2003) ICCV
    • Yang, C.1    Duraiswami, R.2    Gumerov, N.A.3    Davis, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.