메뉴 건너뛰기




Volumn , Issue , 2009, Pages

An efficient bandit algorithm for √T-regret in online multiclass prediction?

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84898768231     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (8)
  • 4
    • 0141496132 scopus 로고    scopus 로고
    • Ultraconservative online algorithms for multiclass problems
    • K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. The Journal of Machine Learning Research, 3: 951-991, 2003.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 951-991
    • Crammer, K.1    Singer, Y.2
  • 5
    • 33244456637 scopus 로고    scopus 로고
    • Robbing the bandit: Less regret in online geometric optimization against an adaptive adversary
    • ACM New York, NY, USA
    • V. Dani and T. P. Hayes. Robbing the bandit: Less regret in online geometric optimization against an adaptive adversary. In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 937-943. ACM New York, NY, USA, 2006.
    • (2006) Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm , pp. 937-943
    • Dani, V.1    Hayes, T.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.