메뉴 건너뛰기




Volumn 9, Issue 3, 2014, Pages

A graph-theoretic approach for identifying non-redundant and relevant gene markers from microarray data using multiobjective binary PSO

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; DATA PROCESSING; DOWN REGULATION; GENE EXPRESSION; GENE IDENTIFICATION; GENETIC ALGORITHM; GENETIC ANALYSIS; GENETIC DATABASE; GENETIC SELECTION; MARKER GENE; MICROARRAY ANALYSIS; MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION ALGORITHM; ALGORITHM; DNA MICROARRAY; GENE EXPRESSION PROFILING; GENE EXPRESSION REGULATION; GENETIC MARKER; GENETICS; HUMAN; PROCEDURES; REPRODUCIBILITY; SIGNAL NOISE RATIO; STATISTICAL MODEL; THEORETICAL MODEL;

EID: 84898740781     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0090949     Document Type: Article
Times cited : (33)

References (49)
  • 1
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • Kohavi R, John G (1997) Wrapper for feature subset selection. Artificial Intelligence 97: 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 2
    • 33748416594 scopus 로고    scopus 로고
    • Incremental wrapper-based gene selection from microarray data for cancer classification
    • Ruiza R, Riquelmea J, Aguilar-Ruizb J (2006) Incremental wrapper-based gene selection from microarray data for cancer classification. Pattern Recognition 39: 2383-2392.
    • (2006) Pattern Recognition , vol.39 , pp. 2383-2392
    • Ruiza, R.1    Riquelmea, J.2    Aguilar-Ruizb, J.3
  • 4
  • 5
    • 77956216411 scopus 로고    scopus 로고
    • Unsupervised feature selection for multi-cluster data
    • Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data. In: KDD10 Washington DC USA.
    • (2010) KDD10 Washington DC USA
    • Cai, D.1    Zhang, C.2    He, X.3
  • 11
  • 13
    • 84863296178 scopus 로고    scopus 로고
    • An improved particle swarm optimization for feature selection
    • Chen LF, Su CT, Chen KH (2012) An improved particle swarm optimization for feature selection. Intelligent Data Analysis 16: 167-182.
    • (2012) Intelligent Data Analysis , vol.16 , pp. 167-182
    • Chen, L.F.1    Su, C.T.2    Chen, K.H.3
  • 14
  • 15
    • 84871342606 scopus 로고    scopus 로고
    • A multi-objective particle swarm optimisation for filter-based feature selection in classification problems
    • Xue B, Cervante L, Shang L, Browne W, Zhang M (2012) A multi-objective particle swarm optimisation for filter-based feature selection in classification problems. Connect Sci 24: 91-116.
    • (2012) Connect Sci , vol.24 , pp. 91-116
    • Xue, B.1    Cervante, L.2    Shang, L.3    Browne, W.4    Zhang, M.5
  • 17
    • 84887799080 scopus 로고    scopus 로고
    • Particle swarm optimization for feature selection in classification: A multi-objective approach
    • Xue B, Zhang M, Browne W (2013) Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Transaction On Cybernetics 43: 1656-1671.
    • (2013) IEEE Transaction on Cybernetics , vol.43 , pp. 1656-1671
    • Xue, B.1    Zhang, M.2    Browne, W.3
  • 19
    • 33644978280 scopus 로고    scopus 로고
    • Evolutionary multiobjective optimization: A historical view of the field
    • Coello CC (2002) Evolutionary multiobjective optimization: a historical view of the field, IEEE Computational Intelligence Magazine 1: 28-36.
    • (2002) IEEE Computational Intelligence Magazine , vol.1 , pp. 28-36
    • Coello, C.C.1
  • 22
    • 62949240361 scopus 로고    scopus 로고
    • Combining pareto-optimal clusters using supervised learning for identifying co-expressed genes
    • Maulik U, Mukhopadhyay A, Bandyopadhyay S (2009) Combining pareto-optimal clusters using supervised learning for identifying co-expressed genes. BMC Bioinformatics 10.
    • (2009) BMC Bioinformatics , vol.10
    • Maulik, U.1    Mukhopadhyay, A.2    Bandyopadhyay, S.3
  • 23
    • 34948842501 scopus 로고    scopus 로고
    • Direct integration of microarrays for selecting informative genes and phenotype classification
    • DOI 10.1016/j.ins.2007.08.013, PII S0020025507003775
    • Yoon Y, Lee J, Park S, Bien S, Chung H, et al. (2008) Direct integration of microarrays for selecting informative genes and phenotype classification. Pattern Recognition 178: 88-105. (Pubitemid 47531787)
    • (2008) Information Sciences , vol.178 , Issue.1 , pp. 88-105
    • Yoon, Y.1    Lee, J.2    Park, S.3    Bien, S.4    Chung, H.C.5    Rha, S.Y.6
  • 24
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U, Barkai N, Notterman D, Gish K, Ybarra S, et al. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96: 6745- 6750.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5
  • 26
  • 29
    • 0742307292 scopus 로고    scopus 로고
    • Orthogonal forward selection and backward elimination algorithms for feature subset selection
    • Mao K (2004) Orthogonal forward selection and backward elimination algorithms for feature subset selection. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 34: 629-634.
    • (2004) IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics , vol.34 , pp. 629-634
    • Mao, K.1
  • 30
    • 4043059226 scopus 로고    scopus 로고
    • Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper
    • Hall M, Smith L (1999) Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. In: Proc. of the 12th International FLAIRS Conference.
    • (1999) Proc. Of the 12th International FLAIRS Conference
    • Hall, M.1    Smith, L.2
  • 32
    • 0036856209 scopus 로고    scopus 로고
    • Nonparametric methods for identifying differentially expressed genes in microarray data
    • Troyanskaya O, Garber M, Brown P, Botstein D, Altman R (2002) Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics 18: 1454-1461. (Pubitemid 35414536)
    • (2002) Bioinformatics , vol.18 , Issue.11 , pp. 1454-1461
    • Troyanskaya, O.G.1    Garber, M.E.2    Brown, P.O.3    Botstein, D.4    Altman, R.B.5
  • 33
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection for microarray gene expression data
    • Ding C, Peng H (2005) Minimum redundancy feature selection for microarray gene expression data. Journal of Bioinformatics ans Computational Biology 3: 185-205.
    • (2005) Journal of Bioinformatics Ans Computational Biology , vol.3 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 35
    • 0006470992 scopus 로고    scopus 로고
    • Entropy, relative entropy and mutual information
    • John Wiley & Sons
    • Cover T, Thomas J (2006) Entropy, relative entropy and mutual information. Elements of Information Theory John Wiley & Sons.
    • (2006) Elements of Information Theory
    • Cover, T.1    Thomas, J.2
  • 41
    • 80051977200 scopus 로고    scopus 로고
    • Particle swarm optimization and intelligence: Advances and applications
    • Hershey New York
    • Parsopoulos K (2010) Particle swarm optimization and intelligence: Advances and applications. Information science reference Hershey New York.
    • (2010) Information Science Reference
    • Parsopoulos, K.1
  • 42
    • 77951139898 scopus 로고    scopus 로고
    • A discrete particle swarm optimization method for feature selection in binary classification problems
    • Unler A, Murat A (2010) A discrete particle swarm optimization method for feature selection in binary classification problems. Pattern Recognition 206: 528-539.
    • (2010) Pattern Recognition , vol.206 , pp. 528-539
    • Unler, A.1    Murat, A.2
  • 43
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • DOI 10.1109/4235.996017, PII S1089778X02041012
    • Deb K, Pratap A, Agrawal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6: 182-197. (Pubitemid 34555372)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 45
    • 81455138867 scopus 로고    scopus 로고
    • A filter-based feature selection approach for identifying potential biomarkers for lung cancer
    • Lee I, Lushington G, Visvanathan M (2011) A filter-based feature selection approach for identifying potential biomarkers for lung cancer. Journal of Clinical Bioinformatics 1.
    • (2011) Journal of Clinical Bioinformatics , vol.1
    • Lee, I.1    Lushington, G.2    Visvanathan, M.3
  • 48
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large b-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning
    • Shipp M, Ross K, Tamayo P,Weng A, Kutok J, et al. (2002) Diffuse large b-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning. Nature Medicine 8.
    • (2002) Nature Medicine , vol.8
    • Shipp, M.1    Ross, K.2    Tamayo, P.3    Weng, A.4    Kutok, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.