-
1
-
-
0041590237
-
A lower bound for the length of partial transversals in a Latin square
-
A.E. Brouwer, A.J. de Vries, and R.M.A. Wieringa A lower bound for the length of partial transversals in a Latin square Nieuw Arch. Wiskd. (5) 24 3 1978 330 332
-
(1978)
Nieuw Arch. Wiskd. (5)
, vol.24
, Issue.3
, pp. 330-332
-
-
Brouwer, A.E.1
De Vries, A.J.2
Wieringa, R.M.A.3
-
2
-
-
84864094146
-
Rainbow matchings of size δ (G) in properly edge-colored graphs
-
11pp
-
J. Diemunsch, M. Ferrara, A. Lo, C. Moffatt, F. Pfender, and P. Wenger Rainbow matchings of size δ (G) in properly edge-colored graphs Electron. J. Combin. 19 2 2012 P52 11pp
-
(2012)
Electron. J. Combin.
, vol.19
, Issue.2
, pp. 52
-
-
Diemunsch, J.1
Ferrara, M.2
Lo, A.3
Moffatt, C.4
Pfender, F.5
Wenger, P.6
-
3
-
-
50649096173
-
A lower bound for the length of a partial transversal in a Latin square
-
P. Hatami, and P.W. Shor A lower bound for the length of a partial transversal in a Latin square J. Combin. Theory Ser. A 115 2008 1103 1113
-
(2008)
J. Combin. Theory Ser. A
, vol.115
, pp. 1103-1113
-
-
Hatami, P.1
Shor, P.W.2
-
4
-
-
84894351584
-
A note on large rainbow matchings in edge-coloured graphs
-
A. Lo, and T. Tan A note on large rainbow matchings in edge-coloured graphs Graphs Combin. 30 2014 389 393
-
(2014)
Graphs Combin.
, vol.30
, pp. 389-393
-
-
Lo, A.1
Tan, T.2
-
6
-
-
0039012732
-
A lower bound for the length of a partial transversal in a Latin square
-
P.W. Shor A lower bound for the length of a partial transversal in a Latin square J. Combin. Theory Ser. A 33 1982 1 8
-
(1982)
J. Combin. Theory Ser. A
, vol.33
, pp. 1-8
-
-
Shor, P.W.1
-
7
-
-
79961232973
-
Rainbow matchings in properly edge colored graphs
-
G. Wang Rainbow matchings in properly edge colored graphs Electron. J. Combin. 18 2011 P162
-
(2011)
Electron. J. Combin.
, vol.18
, pp. 162
-
-
Wang, G.1
-
8
-
-
84862780859
-
Existence of rainbow matchings in properly edge-colored graphs
-
G. Wang, J. Zhang, and G. Liu Existence of rainbow matchings in properly edge-colored graphs Front. Math. China 7 3 2012 543 550
-
(2012)
Front. Math. China
, vol.7
, Issue.3
, pp. 543-550
-
-
Wang, G.1
Zhang, J.2
Liu, G.3
-
9
-
-
0043093035
-
An n × n Latin square has a transversal with at least n - N distinct symbols
-
D.E. Woolbright An n × n Latin square has a transversal with at least n - n distinct symbols J. Combin. Theory Ser. A 24 1978 235 237
-
(1978)
J. Combin. Theory Ser. A
, vol.24
, pp. 235-237
-
-
Woolbright, D.E.1
|