메뉴 건너뛰기




Volumn 36, Issue 5, 2014, Pages 919-928

Kinetic modeling of riboflavin biosynthesis in Bacillus subtilis under production conditions

Author keywords

Bacillus subtilis; Dynamic model; Network characteristics; Rate limiting reaction; RibA protein

Indexed keywords

BIOSYNTHESIS; DYNAMIC MODELS; ENZYMES; ORDINARY DIFFERENTIAL EQUATIONS; PROTEINS;

EID: 84898545933     PISSN: 01415492     EISSN: 15736776     Source Type: Journal    
DOI: 10.1007/s10529-013-1435-8     Document Type: Article
Times cited : (15)

References (31)
  • 1
    • 79958022433 scopus 로고    scopus 로고
    • Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers
    • Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75: 321-360.
    • (2011) Microbiol Mol Biol Rev , vol.75 , pp. 321-360
    • Abbas, C.A.1    Sibirny, A.A.2
  • 3
    • 0033471382 scopus 로고    scopus 로고
    • An interior point algorithm for large scale nonlinear programming
    • Byrd RH, Hribar ME, Nocedal J (1998) An interior point algorithm for large scale nonlinear programming. SIAM J Optim 9: 877-900.
    • (1998) SIAM J Optim , vol.9 , pp. 877-900
    • Byrd, R.H.1    Hribar, M.E.2    Nocedal, J.3
  • 4
    • 0034844144 scopus 로고    scopus 로고
    • Stoichiometric growth model for riboflavin-producing Bacillus subtilis
    • Dauner M, Sauer U (2001) Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnol Bioeng 76: 132-143.
    • (2001) Biotechnol Bioeng , vol.76 , pp. 132-143
    • Dauner, M.1    Sauer, U.2
  • 6
    • 21244445102 scopus 로고    scopus 로고
    • Biosynthesis of flavocoenzymes
    • Fischer M, Bacher A (2005) Biosynthesis of flavocoenzymes. Nat Prod Rep 22: 324-350.
    • (2005) Nat Prod Rep , vol.22 , pp. 324-350
    • Fischer, M.1    Bacher, A.2
  • 7
    • 0037459044 scopus 로고    scopus 로고
    • Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6,7-dimethyl-8-ribityl-lumazine synthase
    • Fischer M, Haase I, Kis K, Meining W, Ladenstein R, Cushman M, Schramek N, Huber R, Bacher A (2003) Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6, 7-dimethyl-8-ribityl-lumazine synthase. J Mol Biol 326: 783-793.
    • (2003) J Mol Biol , vol.326 , pp. 783-793
    • Fischer, M.1    Haase, I.2    Kis, K.3    Meining, W.4    Ladenstein, R.5    Cushman, M.6    Schramek, N.7    Huber, R.8    Bacher, A.9
  • 8
    • 58149269561 scopus 로고    scopus 로고
    • Modelling reaction kinetics inside cells
    • Grima R, Schnell S (2008) Modelling reaction kinetics inside cells. Essays Biochem 45: 41-56.
    • (2008) Essays Biochem , vol.45 , pp. 41-56
    • Grima, R.1    Schnell, S.2
  • 9
    • 0034615904 scopus 로고    scopus 로고
    • Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase
    • Herz S, Eberhardt S, Bacher A (2000) Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3, 4-dihydroxy-2-butanone 4-phosphate synthase. Phytochemistry 53: 723-731.
    • (2000) Phytochemistry , vol.53 , pp. 723-731
    • Herz, S.1    Eberhardt, S.2    Bacher, A.3
  • 10
    • 79958038701 scopus 로고    scopus 로고
    • Biotechnology of riboflavin production
    • Cofactors, L. Mander and H. W. Liu (Eds.), Philadelphia: Elsevier
    • Hohmann HP, Stahmann KP (2010) Biotechnology of riboflavin production. In: Mander L, Liu HW (eds) Comprehensive natural products, II chemistry and biology, vol 7., CofactorsElsevier, Philadelphia, pp 115-139.
    • (2010) Comprehensive Natural Products, II Chemistry and Biology , vol.7 , pp. 115-139
    • Hohmann, H.P.1    Stahmann, K.P.2
  • 11
    • 0033040385 scopus 로고    scopus 로고
    • GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production
    • Hümbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann HP, Ritz H, Richter G, Bacher A, van Loon APGM (1999) GTP cyclohydrolase II and 3, 4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol 22: 1-7.
    • (1999) J Ind Microbiol Biotechnol , vol.22 , pp. 1-7
    • Hümbelin, M.1    Griesser, V.2    Keller, T.3    Schurter, W.4    Haiker, M.5    Hohmann, H.P.6    Ritz, H.7    Richter, G.8    Bacher, A.9    van Loon, A.P.G.M.10
  • 12
    • 84858005266 scopus 로고    scopus 로고
    • Riboflavin production by Ashbya gossypii
    • Kato T, Park EY (2012) Riboflavin production by Ashbya gossypii. Biotechnol Lett 34: 611-618.
    • (2012) Biotechnol Lett , vol.34 , pp. 611-618
    • Kato, T.1    Park, E.Y.2
  • 13
    • 0029054040 scopus 로고
    • Substrate channeling in the lumazine synthase/riboflavin synthase complex of Bacillus subtilis
    • Kis K, Bacher A (1995) Substrate channeling in the lumazine synthase/riboflavin synthase complex of Bacillus subtilis. J Biol Chem 270: 16788-16795.
    • (1995) J Biol Chem , vol.270 , pp. 16788-16795
    • Kis, K.1    Bacher, A.2
  • 14
    • 0032729822 scopus 로고    scopus 로고
    • Competition for enzymes in metabolic pathways: implications for optimal distributions of enzyme concentrations and for the distribution of flux control
    • Klipp E, Heinrich R (1999) Competition for enzymes in metabolic pathways: implications for optimal distributions of enzyme concentrations and for the distribution of flux control. BioSystems 54: 1-14.
    • (1999) BioSystems , vol.54 , pp. 1-14
    • Klipp, E.1    Heinrich, R.2
  • 16
    • 68149170547 scopus 로고    scopus 로고
    • Biosynthesis of riboflavin: screening for an improved GTP cyclohydrolase II mutant
    • Lehmann M, Degen S, Hohmann HP, Wyss M, Bacher A, Schramek N (2009) Biosynthesis of riboflavin: screening for an improved GTP cyclohydrolase II mutant. FEBS J 276: 4119-4129.
    • (2009) FEBS J , vol.276 , pp. 4119-4129
    • Lehmann, M.1    Degen, S.2    Hohmann, H.P.3    Wyss, M.4    Bacher, A.5    Schramek, N.6
  • 17
    • 33846617808 scopus 로고    scopus 로고
    • Bringing metabolic networks to life: convenience rate law and thermodynamic constraints
    • doi:10.1186/1742-4682-3-41
    • Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3: 41. doi: 10. 1186/1742-4682-3-41.
    • (2006) Theor Biol Med Model , vol.3 , pp. 41
    • Liebermeister, W.1    Klipp, E.2
  • 18
    • 0031882942 scopus 로고    scopus 로고
    • Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC
    • Mack M, van Loon APGM, Hohmann HP (1998) Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. J Bacteriol 180: 950-955.
    • (1998) J Bacteriol , vol.180 , pp. 950-955
    • Mack, M.1    van Loon, A.P.G.M.2    Hohmann, H.P.3
  • 19
    • 45749137952 scopus 로고    scopus 로고
    • Kinetic and mechanistic analysis of the Escherichia coli ribD-encoded bifunctional deaminase-reductase involved in riboflavin biosynthesis
    • Magalhães MLB, Argyrou A, Cahill SM, Blanchard JS (2008) Kinetic and mechanistic analysis of the Escherichia coli ribD-encoded bifunctional deaminase-reductase involved in riboflavin biosynthesis. Biochemistry 47: 6499-6507.
    • (2008) Biochemistry , vol.47 , pp. 6499-6507
    • Magalhães, M.L.B.1    Argyrou, A.2    Cahill, S.M.3    Blanchard, J.S.4
  • 20
    • 49949115796 scopus 로고    scopus 로고
    • Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris
    • doi:10.1186/1475-2859-7-23
    • Marx H, Mattanovich D, Sauer M (2008) Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microb Cell Fact 7: 23. doi: 10. 1186/1475-2859-7-23.
    • (2008) Microb Cell Fact , vol.7 , pp. 23
    • Marx, H.1    Mattanovich, D.2    Sauer, M.3
  • 24
    • 0030946770 scopus 로고    scopus 로고
    • Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis
    • Richter G, Fischer M, Krieger C, Eberhardt S, Lüttgen H, Gerstenschläger I, Bacher A (1997) Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J Bacteriol 179: 2022-2028.
    • (1997) J Bacteriol , vol.179 , pp. 2022-2028
    • Richter, G.1    Fischer, M.2    Krieger, C.3    Eberhardt, S.4    Lüttgen, H.5    Gerstenschläger, I.6    Bacher, A.7
  • 27
    • 84867452996 scopus 로고    scopus 로고
    • Development of fluorescent reporter tagged RIB gene cassettes for replicative transformation, early expression, and enhanced riboflavin production in Eremothecium ashbyi
    • Sengupta S, Kaufmann A, Chandra TS (2012) Development of fluorescent reporter tagged RIB gene cassettes for replicative transformation, early expression, and enhanced riboflavin production in Eremothecium ashbyi. Fungal Biol 116: 1042-1051.
    • (2012) Fungal Biol , vol.116 , pp. 1042-1051
    • Sengupta, S.1    Kaufmann, A.2    Chandra, T.S.3
  • 29
    • 67649370753 scopus 로고    scopus 로고
    • Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis
    • Shi S, Shen Z, Chen X, Chen T, Zhao X (2009a) Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochem Eng J 46: 28-33.
    • (2009) Biochem Eng J , vol.46 , pp. 28-33
    • Shi, S.1    Shen, Z.2    Chen, X.3    Chen, T.4    Zhao, X.5
  • 30
    • 68049129551 scopus 로고    scopus 로고
    • Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production
    • Shi S, Chen T, Zhang Z, Chen X, Zhao X (2009b) Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng 11: 243-252.
    • (2009) Metab Eng , vol.11 , pp. 243-252
    • Shi, S.1    Chen, T.2    Zhang, Z.3    Chen, X.4    Zhao, X.5
  • 31
    • 0034091478 scopus 로고    scopus 로고
    • Three biotechnical processes using Ashbya gossypii, Candida famata or Bacillus subtilis compete with chemical riboflavin production
    • Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53: 509-516.
    • (2000) Appl Microbiol Biotechnol , vol.53 , pp. 509-516
    • Stahmann, K.P.1    Revuelta, J.L.2    Seulberger, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.