-
1
-
-
79958022433
-
Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers
-
Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75: 321-360.
-
(2011)
Microbiol Mol Biol Rev
, vol.75
, pp. 321-360
-
-
Abbas, C.A.1
Sibirny, A.A.2
-
3
-
-
0033471382
-
An interior point algorithm for large scale nonlinear programming
-
Byrd RH, Hribar ME, Nocedal J (1998) An interior point algorithm for large scale nonlinear programming. SIAM J Optim 9: 877-900.
-
(1998)
SIAM J Optim
, vol.9
, pp. 877-900
-
-
Byrd, R.H.1
Hribar, M.E.2
Nocedal, J.3
-
4
-
-
0034844144
-
Stoichiometric growth model for riboflavin-producing Bacillus subtilis
-
Dauner M, Sauer U (2001) Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnol Bioeng 76: 132-143.
-
(2001)
Biotechnol Bioeng
, vol.76
, pp. 132-143
-
-
Dauner, M.1
Sauer, U.2
-
6
-
-
21244445102
-
Biosynthesis of flavocoenzymes
-
Fischer M, Bacher A (2005) Biosynthesis of flavocoenzymes. Nat Prod Rep 22: 324-350.
-
(2005)
Nat Prod Rep
, vol.22
, pp. 324-350
-
-
Fischer, M.1
Bacher, A.2
-
7
-
-
0037459044
-
Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6,7-dimethyl-8-ribityl-lumazine synthase
-
Fischer M, Haase I, Kis K, Meining W, Ladenstein R, Cushman M, Schramek N, Huber R, Bacher A (2003) Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6, 7-dimethyl-8-ribityl-lumazine synthase. J Mol Biol 326: 783-793.
-
(2003)
J Mol Biol
, vol.326
, pp. 783-793
-
-
Fischer, M.1
Haase, I.2
Kis, K.3
Meining, W.4
Ladenstein, R.5
Cushman, M.6
Schramek, N.7
Huber, R.8
Bacher, A.9
-
8
-
-
58149269561
-
Modelling reaction kinetics inside cells
-
Grima R, Schnell S (2008) Modelling reaction kinetics inside cells. Essays Biochem 45: 41-56.
-
(2008)
Essays Biochem
, vol.45
, pp. 41-56
-
-
Grima, R.1
Schnell, S.2
-
9
-
-
0034615904
-
Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase
-
Herz S, Eberhardt S, Bacher A (2000) Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana specifies a bifunctional GTP cyclohydrolase II/3, 4-dihydroxy-2-butanone 4-phosphate synthase. Phytochemistry 53: 723-731.
-
(2000)
Phytochemistry
, vol.53
, pp. 723-731
-
-
Herz, S.1
Eberhardt, S.2
Bacher, A.3
-
10
-
-
79958038701
-
Biotechnology of riboflavin production
-
Cofactors, L. Mander and H. W. Liu (Eds.), Philadelphia: Elsevier
-
Hohmann HP, Stahmann KP (2010) Biotechnology of riboflavin production. In: Mander L, Liu HW (eds) Comprehensive natural products, II chemistry and biology, vol 7., CofactorsElsevier, Philadelphia, pp 115-139.
-
(2010)
Comprehensive Natural Products, II Chemistry and Biology
, vol.7
, pp. 115-139
-
-
Hohmann, H.P.1
Stahmann, K.P.2
-
11
-
-
0033040385
-
GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production
-
Hümbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann HP, Ritz H, Richter G, Bacher A, van Loon APGM (1999) GTP cyclohydrolase II and 3, 4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol 22: 1-7.
-
(1999)
J Ind Microbiol Biotechnol
, vol.22
, pp. 1-7
-
-
Hümbelin, M.1
Griesser, V.2
Keller, T.3
Schurter, W.4
Haiker, M.5
Hohmann, H.P.6
Ritz, H.7
Richter, G.8
Bacher, A.9
van Loon, A.P.G.M.10
-
12
-
-
84858005266
-
Riboflavin production by Ashbya gossypii
-
Kato T, Park EY (2012) Riboflavin production by Ashbya gossypii. Biotechnol Lett 34: 611-618.
-
(2012)
Biotechnol Lett
, vol.34
, pp. 611-618
-
-
Kato, T.1
Park, E.Y.2
-
13
-
-
0029054040
-
Substrate channeling in the lumazine synthase/riboflavin synthase complex of Bacillus subtilis
-
Kis K, Bacher A (1995) Substrate channeling in the lumazine synthase/riboflavin synthase complex of Bacillus subtilis. J Biol Chem 270: 16788-16795.
-
(1995)
J Biol Chem
, vol.270
, pp. 16788-16795
-
-
Kis, K.1
Bacher, A.2
-
14
-
-
0032729822
-
Competition for enzymes in metabolic pathways: implications for optimal distributions of enzyme concentrations and for the distribution of flux control
-
Klipp E, Heinrich R (1999) Competition for enzymes in metabolic pathways: implications for optimal distributions of enzyme concentrations and for the distribution of flux control. BioSystems 54: 1-14.
-
(1999)
BioSystems
, vol.54
, pp. 1-14
-
-
Klipp, E.1
Heinrich, R.2
-
15
-
-
71149108764
-
-
Weinheim: Wiley
-
Klipp E, Liebermeister W, Wierling C, Kowald A, Lehrach H, Herwig R (2009) Systems biology: a textbook. Wiley, Weinheim.
-
(2009)
Systems Biology: A Textbook
-
-
Klipp, E.1
Liebermeister, W.2
Wierling, C.3
Kowald, A.4
Lehrach, H.5
Herwig, R.6
-
16
-
-
68149170547
-
Biosynthesis of riboflavin: screening for an improved GTP cyclohydrolase II mutant
-
Lehmann M, Degen S, Hohmann HP, Wyss M, Bacher A, Schramek N (2009) Biosynthesis of riboflavin: screening for an improved GTP cyclohydrolase II mutant. FEBS J 276: 4119-4129.
-
(2009)
FEBS J
, vol.276
, pp. 4119-4129
-
-
Lehmann, M.1
Degen, S.2
Hohmann, H.P.3
Wyss, M.4
Bacher, A.5
Schramek, N.6
-
17
-
-
33846617808
-
Bringing metabolic networks to life: convenience rate law and thermodynamic constraints
-
doi:10.1186/1742-4682-3-41
-
Liebermeister W, Klipp E (2006) Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model 3: 41. doi: 10. 1186/1742-4682-3-41.
-
(2006)
Theor Biol Med Model
, vol.3
, pp. 41
-
-
Liebermeister, W.1
Klipp, E.2
-
18
-
-
0031882942
-
Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC
-
Mack M, van Loon APGM, Hohmann HP (1998) Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. J Bacteriol 180: 950-955.
-
(1998)
J Bacteriol
, vol.180
, pp. 950-955
-
-
Mack, M.1
van Loon, A.P.G.M.2
Hohmann, H.P.3
-
19
-
-
45749137952
-
Kinetic and mechanistic analysis of the Escherichia coli ribD-encoded bifunctional deaminase-reductase involved in riboflavin biosynthesis
-
Magalhães MLB, Argyrou A, Cahill SM, Blanchard JS (2008) Kinetic and mechanistic analysis of the Escherichia coli ribD-encoded bifunctional deaminase-reductase involved in riboflavin biosynthesis. Biochemistry 47: 6499-6507.
-
(2008)
Biochemistry
, vol.47
, pp. 6499-6507
-
-
Magalhães, M.L.B.1
Argyrou, A.2
Cahill, S.M.3
Blanchard, J.S.4
-
20
-
-
49949115796
-
Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris
-
doi:10.1186/1475-2859-7-23
-
Marx H, Mattanovich D, Sauer M (2008) Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microb Cell Fact 7: 23. doi: 10. 1186/1475-2859-7-23.
-
(2008)
Microb Cell Fact
, vol.7
, pp. 23
-
-
Marx, H.1
Mattanovich, D.2
Sauer, M.3
-
24
-
-
0030946770
-
Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis
-
Richter G, Fischer M, Krieger C, Eberhardt S, Lüttgen H, Gerstenschläger I, Bacher A (1997) Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J Bacteriol 179: 2022-2028.
-
(1997)
J Bacteriol
, vol.179
, pp. 2022-2028
-
-
Richter, G.1
Fischer, M.2
Krieger, C.3
Eberhardt, S.4
Lüttgen, H.5
Gerstenschläger, I.6
Bacher, A.7
-
25
-
-
0031004921
-
Metabolic fluxes in riboflavin-producing Bacillus subtilis
-
Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wüthrich K (1997) Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol 15: 448-452.
-
(1997)
Nat Biotechnol
, vol.15
, pp. 448-452
-
-
Sauer, U.1
Hatzimanikatis, V.2
Bailey, J.E.3
Hochuli, M.4
Szyperski, T.5
Wüthrich, K.6
-
27
-
-
84867452996
-
Development of fluorescent reporter tagged RIB gene cassettes for replicative transformation, early expression, and enhanced riboflavin production in Eremothecium ashbyi
-
Sengupta S, Kaufmann A, Chandra TS (2012) Development of fluorescent reporter tagged RIB gene cassettes for replicative transformation, early expression, and enhanced riboflavin production in Eremothecium ashbyi. Fungal Biol 116: 1042-1051.
-
(2012)
Fungal Biol
, vol.116
, pp. 1042-1051
-
-
Sengupta, S.1
Kaufmann, A.2
Chandra, T.S.3
-
29
-
-
67649370753
-
Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis
-
Shi S, Shen Z, Chen X, Chen T, Zhao X (2009a) Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochem Eng J 46: 28-33.
-
(2009)
Biochem Eng J
, vol.46
, pp. 28-33
-
-
Shi, S.1
Shen, Z.2
Chen, X.3
Chen, T.4
Zhao, X.5
-
30
-
-
68049129551
-
Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production
-
Shi S, Chen T, Zhang Z, Chen X, Zhao X (2009b) Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metab Eng 11: 243-252.
-
(2009)
Metab Eng
, vol.11
, pp. 243-252
-
-
Shi, S.1
Chen, T.2
Zhang, Z.3
Chen, X.4
Zhao, X.5
-
31
-
-
0034091478
-
Three biotechnical processes using Ashbya gossypii, Candida famata or Bacillus subtilis compete with chemical riboflavin production
-
Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53: 509-516.
-
(2000)
Appl Microbiol Biotechnol
, vol.53
, pp. 509-516
-
-
Stahmann, K.P.1
Revuelta, J.L.2
Seulberger, H.3
|