메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Incremental LDA learning by combining reconstructive and discriminative approaches

Author keywords

[No Author keywords available]

Indexed keywords

BATCH LEARNING; CLASSIFICATION RESULTS; DATA REPRESENTATIONS; DISCRIMINATIVE APPROACH; LARGE AMOUNTS; SUB-SPACE METHODS; TRAINING DATA;

EID: 84898470583     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5244/C.21.44     Document Type: Conference Paper
Times cited : (34)

References (18)
  • 1
    • 0031185845 scopus 로고    scopus 로고
    • Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    • P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. PAMI, 19(7):711-720, 1997.
    • (1997) PAMI , vol.19 , Issue.7 , pp. 711-720
    • Belhumeur, P.N.1    Hespanha, J.P.2    Kriegman, D.J.3
  • 2
    • 31644433509 scopus 로고    scopus 로고
    • Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling
    • S. Fidler, D. Skočaj, and A. Leonardis. Combining Reconstructive and Discriminative Subspace Methods for Robust Classification and Regression by Subsampling. PAMI, 28(3):337-350, 2006.
    • (2006) PAMI , vol.28 , Issue.3 , pp. 337-350
    • Fidler, S.1    Skočaj, D.2    Leonardis, A.3
  • 3
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 5
    • 0001576029 scopus 로고    scopus 로고
    • Face recognition: From theory to applications
    • chapter Characterizing virtual eigensignatures for general purpose face recognition Springer
    • D. B. Graham and N. M. Allinson. Face recognition: From theory to applications, volume 163 of NATO ASI Series F, Computer and Systems Sciences, chapter Characterizing virtual eigensignatures for general purpose face recognition, pages 446-456. Springer, 1998.
    • (1998) NATO ASI Series F, Computer and Systems Sciences , vol.163 , pp. 446-456
    • Graham, D.B.1    Allinson, N.M.2
  • 7
    • 33745933878 scopus 로고    scopus 로고
    • Combining generative models and fisher kernels for object recognition
    • Alex D. Holub, Max Welling, and Pietro Perona. Combining generative models and fisher kernels for object recognition. In Proc. IEEE Intern. Conf. on Computer Vision, volume I, pages 136-143, 2005.
    • (2005) Proc. IEEE Intern. Conf. on Computer Vision , vol.1 , pp. 136-143
    • Holub, A.D.1    Welling, M.2    Perona, P.3
  • 8
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • H. Hotelling. Analysis of a complex of statistical variables into principal components. Educational Psychology, 24:417-441, 1933.
    • (1933) Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 9
    • 33745918661 scopus 로고    scopus 로고
    • A generative/discriminative learning algorithm for image classifications
    • Yi Li, Linda G. Shapiro, and Jeff A. Bilmes. A generative/discriminative learning algorithm for image classifications. In Proc. IEEE Intern. Conf. on Computer Vision, volume II, pages 1605-1612, 2005.
    • (2005) Proc. IEEE Intern. Conf. on Computer Vision , vol.2 , pp. 1605-1612
    • Li, Y.1    Shapiro, L.G.2    Bilmes, J.A.3
  • 13
    • 0035248924 scopus 로고    scopus 로고
    • PCA versus LDA
    • A. M. Martínez and A. C. Kak. PCA versus LDA. PAMI, 23(2):228-233, 2001.
    • (2001) PAMI , vol.23 , Issue.2 , pp. 228-233
    • Martínez, A.M.1    Kak, A.C.2
  • 15
    • 26844499076 scopus 로고    scopus 로고
    • Incremental linear discriminassignmentant analysis for classification of data streams
    • S. Pang, S. Ozawa, and N. Kasabov. Incremental linear discriminassignmentant analysis for classification of data streams. Systems, Man and Cybernetics, Part B, 35(5):905-914, 2005.
    • (2005) Systems, Man and Cybernetics, Part B , vol.35 , Issue.5 , pp. 905-914
    • Pang, S.1    Ozawa, S.2    Kasabov, N.3
  • 16
    • 0344982975 scopus 로고    scopus 로고
    • Weighted and robust incremental method for subspace learning
    • D. Skočaj and A. Leonardis. Weighted and robust incremental method for subspace learning. In ICCV 2003, volume 2, pages 1494-1501, 2003.
    • (2003) ICCV , vol.2 , Issue.2003 , pp. 1494-1501
    • Skočaj, D.1    Leonardis, A.2
  • 17
    • 0036487285 scopus 로고    scopus 로고
    • Why can LDA be performed in PCA transformed space?
    • J. Yang and J.-Y. Yang. Why can LDA be performed in PCA transformed space? PR, 36:563-566, 2003.
    • (2003) PR , vol.36 , pp. 563-566
    • Yang, J.1    Yang, J.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.