메뉴 건너뛰기




Volumn 23, Issue , 2012, Pages

Robust interactive learning

Author keywords

Active learning; Interactive learning; Query complexity; Statistical learning theory

Indexed keywords

LEARNING SYSTEMS;

EID: 84898443476     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (35)
  • 1
    • 0000710299 scopus 로고    scopus 로고
    • Queries and concept learning
    • D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1998.
    • (1998) Machine Learning , vol.2 , pp. 319-342
    • Angluin, D.1
  • 2
    • 33847663803 scopus 로고    scopus 로고
    • A new PAC bound for intersection-closed concept classes
    • P. Auer and R. Ortner. A new PAC bound for intersection-closed concept classes. Machine Learning, 66: 151-163, 2007.
    • (2007) Machine Learning , vol.66 , pp. 151-163
    • Auer, P.1    Ortner, R.2
  • 5
    • 84860640656 scopus 로고    scopus 로고
    • The true sample complexity of active learning
    • M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In COLT, 2008.
    • (2008) COLT
    • Balcan, M.-F.1    Hanneke, S.2    Wortman, J.3
  • 13
    • 71049162986 scopus 로고    scopus 로고
    • Coarse sample complexity bounds for active learning
    • S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, volume 18, 2005.
    • (2005) NIPS , vol.18
    • Dasgupta, S.1
  • 14
    • 33745762904 scopus 로고    scopus 로고
    • Analysis of perceptron-based active learning
    • S. Dasgupta, A. Kalai, and C. Monteleoni. Analysis of perceptron-based active learning. In COLT, 2005.
    • (2005) COLT
    • Dasgupta, S.1    Kalai, A.2    Monteleoni, C.3
  • 17
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997.
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 18
    • 33746227538 scopus 로고    scopus 로고
    • Concentration inequalities and asymptotic results for ratio type empirical processes
    • E. Gine and V. Koltchinskii. Concentration inequalities and asymptotic results for ratio type empirical processes. The Annals of Probability, 34(3):1143-1216, 2006.
    • (2006) The Annals of Probability , vol.34 , Issue.3 , pp. 1143-1216
    • Gine, E.1    Koltchinskii, V.2
  • 19
    • 56449094315 scopus 로고    scopus 로고
    • A bound on the label complexity of agnostic active learning
    • S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007a.
    • (2007) ICML
    • Hanneke, S.1
  • 21
    • 77953504821 scopus 로고    scopus 로고
    • PhD thesis, Machine Learning Department, School of Computer Science, Carnegie Mellon University
    • S. Hanneke. Theoretical Foundations of Active Learning. PhD thesis, Machine Learning Department, School of Computer Science, Carnegie Mellon University, 2009.
    • (2009) Theoretical Foundations of Active Learning
    • Hanneke, S.1
  • 22
    • 79551594780 scopus 로고    scopus 로고
    • Rates of convergence in active learning
    • S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333-361, 2011.
    • (2011) The Annals of Statistics , vol.39 , Issue.1 , pp. 333-361
    • Hanneke, S.1
  • 25
    • 0025446773 scopus 로고
    • Learning nested differences of intersection-closed concept classes
    • D. Helmbold, R. Sloan, and M.Warmuth. Learning nested differences of intersection-closed concept classes. Machine Learning, 5:165-196, 1990.
    • (1990) Machine Learning , vol.5 , pp. 165-196
    • Helmbold, D.1    Sloan, R.2    Warmuth, M.3
  • 26
    • 78649426154 scopus 로고    scopus 로고
    • Rademacher complexities and bounding the excess risk in active learning
    • V. Koltchinskii. Rademacher complexities and bounding the excess risk in active learning. Journal of Machine Learning, 11:2457-2485, 2010.
    • (2010) Journal of Machine Learning , vol.11 , pp. 2457-2485
    • Koltchinskii, V.1
  • 27
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 1988.
    • (1988) Machine Learning
    • Littlestone, N.1
  • 28
    • 33746243474 scopus 로고    scopus 로고
    • Risk bounds for statistical learning
    • P. Massart and E. Nedelec. Risk bounds for statistical learning. The Annals of Statistics, 34(5):2326-2366, 2006.
    • (2006) The Annals of Statistics , vol.34 , Issue.5 , pp. 2326-2366
    • Massart, P.1    Nedelec, E.2
  • 30
    • 0000378526 scopus 로고
    • On learning sets and functions
    • B. K. Natarajan. On learning sets and functions. Machine Learning, 4:67-97, 1989.
    • (1989) Machine Learning , vol.4 , pp. 67-97
    • Natarajan, B.K.1
  • 32
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 4:45-66, 2001.
    • (2001) Journal of Machine Learning Research , vol.4 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 35
    • 79551595391 scopus 로고    scopus 로고
    • Sufficient conditions for agnostic active learnable
    • L. Wang. Sufficient conditions for agnostic active learnable. In NIPS, 2009.
    • (2009) NIPS
    • Wang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.