-
1
-
-
0007107126
-
-
0021-8979 10.1063/1.1728414
-
L.V. Azároff, J. Appl Phys. 32, 1658 (1961). 0021-8979 10.1063/1.1728414
-
(1961)
J. Appl Phys.
, vol.32
, pp. 1658
-
-
Azároff L, V.1
-
2
-
-
64949173479
-
-
PPCPFQ 1463-9076 10.1039/b902586n
-
J. Maier, Phys. Chem. Chem. Phys. 11, 3011 (2009). PPCPFQ 1463-9076 10.1039/b902586n
-
(2009)
Phys. Chem. Chem. Phys.
, vol.11
, pp. 3011
-
-
Maier, J.1
-
3
-
-
38049120332
-
-
JPCAFH 1089-5639 10.1021/jp073474u
-
E.M. Chan, M.A. Marcus, S. Fakra, M. ElNaggar, R.A. Mathies, and A.P. Alivisatos, J. Phys. Chem. A 111, 12210 (2007). JPCAFH 1089-5639 10.1021/jp073474u
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 12210
-
-
Chan E, M.1
Marcus M, A.2
Fakra, S.3
Elnaggar, M.4
Mathies R, A.5
Alivisatos A, P.6
-
4
-
-
0000227711
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.30.6896
-
R.J. Cava and E.A. Rietman, Phys. Rev. B 30, 6896 (1984). PRBMDO 0163-1829 10.1103/PhysRevB.30.6896
-
(1984)
Phys. Rev. B
, vol.30
, pp. 6896
-
-
Cava R, J.1
Rietman E, A.2
-
5
-
-
84862746495
-
-
JCOMEL 0953-8984 10.1088/0953-8984/24/27/275303
-
B.J. Morgan and P.A. Madden, J. Phys. Condens. Matter 24, 275303 (2012). JCOMEL 0953-8984 10.1088/0953-8984/24/27/275303
-
(2012)
J. Phys. Condens. Matter
, vol.24
, pp. 275303
-
-
Morgan B, J.1
Madden P, A.2
-
7
-
-
4143086086
-
Superionics: Crystal structures and conduction processes
-
DOI 10.1088/0034-4885/67/7/R05, PII S0034488504937049
-
S. Hull, Rep. Prog. Phys. 67, 1233 (2004). RPPHAG 0034-4885 10.1088/0034-4885/67/7/R05 (Pubitemid 39097234)
-
(2004)
Reports on Progress in Physics
, vol.67
, Issue.7
, pp. 1233-1314
-
-
Hull, S.1
-
9
-
-
33947360365
-
Conductivity of AgI under high pressure
-
DOI 10.1063/1.2709579
-
A. Hao, C. Gao, M. Li, C. He, X. Huang, G. Zou, Y. Tian, and Y. Ma, J. Appl. Phys. 101, 053701 (2007). JAPIAU 0021-8979 10.1063/1.2709579 (Pubitemid 46442610)
-
(2007)
Journal of Applied Physics
, vol.101
, Issue.5
, pp. 053701
-
-
Hao, A.1
Gao, C.2
Li, M.3
He, C.4
Huang, X.5
Zou, G.6
Tian, Y.7
Ma, Y.8
-
10
-
-
0020737078
-
-
The necessary conditions for ionic motion to be described in terms of discrete hops are discussed in,. Although diffusion in (Equation presented)-AgI can also be described as hopping between tetrahedral sites, the timescales of site residence and jump processes are of the same order of magnitude and the assumption used in simple hopping models that the residence time is much greater than the jump time is not valid. SSIOD3 0167-2738 10.1016/0167-2738(83)90069-3
-
The necessary conditions for ionic motion to be described in terms of discrete hops are discussed in C.R.A. Catlow, Solid State Ionics 8, 89 (1983). Although diffusion in (Equation presented)-AgI can also be described as hopping between tetrahedral sites, the timescales of site residence and jump processes are of the same order of magnitude and the assumption used in simple hopping models that the residence time is much greater than the jump time is not valid. SSIOD3 0167-2738 10.1016/0167-2738(83)90069-3
-
(1983)
Solid State Ionics
, vol.8
, pp. 89
-
-
Catlow, R.A.C.1
-
11
-
-
0022863755
-
-
ARMSCX 0084-6600 10.1146/annurev.ms.16.080186.002505
-
C.R.A. Catlow, Annu. Rev. Mater. Sci. 16, 517 (1986). ARMSCX 0084-6600 10.1146/annurev.ms.16.080186.002505
-
(1986)
Annu. Rev. Mater. Sci.
, vol.16
, pp. 517
-
-
Catlow, R.A.C.1
-
12
-
-
4244179012
-
-
JPCSAW 0022-3697 10.1016/0022-3697(57)90059-8
-
G.H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957). JPCSAW 0022-3697 10.1016/0022-3697(57)90059-8
-
(1957)
J. Phys. Chem. Solids
, vol.3
, pp. 121
-
-
Vineyard, H.G.1
-
15
-
-
0000180740
-
-
JCPSA6 0021-9606 10.1063/1.481205
-
F. Zimmer, P. Ballone, J. Maier, and M. Parrinello, J. Chem. Phys. 112, 6416 (2000). JCPSA6 0021-9606 10.1063/1.481205
-
(2000)
J. Chem. Phys.
, vol.112
, pp. 6416
-
-
Zimmer, F.1
Ballone, P.2
Maier, J.3
Parrinello, M.4
-
16
-
-
84898448356
-
-
Simulation cell volumes were (Equation presented) for (Equation presented), (Equation presented) for (Equation presented), and (Equation presented) for the high-pressure (Equation presented) phase.
-
Simulation cell volumes were (Equation presented) for (Equation presented), (Equation presented) for (Equation presented), and (Equation presented) for the high-pressure (Equation presented) phase.
-
-
-
-
17
-
-
37049065618
-
-
TFSOA4 0014-7672 10.1039/tf9565200786
-
K. Compaan and Y. Haven, Trans. Faraday Soc. 52, 786 (1956); TFSOA4 0014-7672 10.1039/tf9565200786
-
(1956)
Trans. Faraday Soc.
, vol.52
, pp. 786
-
-
Compaan, K.1
Haven, Y.2
-
18
-
-
0042390901
-
-
TFSOA4 0014-7672 10.1039/tf9585401498
-
K. Compaan and Y. Haven, Trans. Faraday Soc. 54, 1498 (1958). TFSOA4 0014-7672 10.1039/tf9585401498
-
(1958)
Trans. Faraday Soc.
, vol.54
, pp. 1498
-
-
Compaan, K.1
Haven, Y.2
-
19
-
-
84898422619
-
-
The procedure for assigning ions to lattice sites by geometric construction is described in Ref. [5].
-
The procedure for assigning ions to lattice sites by geometric construction is described in Ref. [5].
-
-
-
-
20
-
-
84898431847
-
-
See Supplemental Material at for details.
-
See Supplemental Material at http://link.aps.org/supplemental/10.1103/ PhysRevLett.112.145901 for details.
-
-
-
-
21
-
-
0034299688
-
-
The observation that nearly all diffusion events occur between neighbouring lattice sites contradicts the proposal of Lee et al. that the dominant low-temperature diffusion mechanism in B4 AgI is pure interstitial diffusion along (Equation presented)-oriented channels of face-sharing octahedra: see,. JPCSAW 0022-3697 10.1016/S0022-3697(00)00020-2
-
The observation that nearly all diffusion events occur between neighbouring lattice sites contradicts the proposal of Lee et al. that the dominant low-temperature diffusion mechanism in B4 AgI is pure interstitial diffusion along (Equation presented)-oriented channels of face-sharing octahedra: see J.-S. Lee, S. Adams, and J. Maier, J. Phys. Chem. Solids 61, 1607 (2000). JPCSAW 0022-3697 10.1016/S0022-3697(00)00020-2
-
(2000)
J. Phys. Chem. Solids
, vol.61
, pp. 1607
-
-
Lee, J.-S.1
Adams, S.2
Maier, J.3
-
24
-
-
34247095787
-
-
The construction of chains of diffusion events is similar to the analysis of Wolf and Catlow used to identify "causal chains" of ion trajectories in (Equation presented):,. JPSOAW 0022-3719 10.1088/0022-3719/17/ 36/018
-
The construction of chains of diffusion events is similar to the analysis of Wolf and Catlow used to identify "causal chains" of ion trajectories in (Equation presented): M.L. Wolf and C.R.A. Catlow, J. Phys. C 17, 6635 (1984). JPSOAW 0022-3719 10.1088/0022-3719/17/36/018
-
(1984)
J. Phys. C
, vol.17
, pp. 6635
-
-
Wolf M, L.1
Catlow C, R.A.2
-
25
-
-
84898446961
-
-
Chains of length 2 correspond to Frenkel pair formation and immediate recombination, with no contribution to either mass or charge transport, and are discounted from this analysis.
-
Chains of length 2 correspond to Frenkel pair formation and immediate recombination, with no contribution to either mass or charge transport, and are discounted from this analysis.
-
-
-
-
26
-
-
0032093542
-
-
JPCSAW 0022-3697 10.1016/S0022-3697(97)00243-6
-
J.R. Patnaik and C.S. Sunandana, J. Phys. Chem. Solids 59, 1059 (1998). JPCSAW 0022-3697 10.1016/S0022-3697(97)00243-6
-
(1998)
J. Phys. Chem. Solids
, vol.59
, pp. 1059
-
-
Patnaik J, R.1
Sunandana C, S.2
-
27
-
-
84898410955
-
-
We expect nonstoichiometric systems will also exhibit non-Poisson diffusion processes, but that these make a negligible contribution towards ensemble transport except for cases of very limited nonstoichiometry.
-
We expect nonstoichiometric systems will also exhibit non-Poisson diffusion processes, but that these make a negligible contribution towards ensemble transport except for cases of very limited nonstoichiometry.
-
-
-
|