메뉴 건너뛰기




Volumn 122, Issue , 2014, Pages 65-73

The 3dSOBS+ algorithm for moving object detection

Author keywords

Background subtraction; Motion detection; Neural network; Self organization

Indexed keywords

AUTOMATICALLY GENERATED; BACKGROUND SUBTRACTION; ILLUMINATION VARIATION; MOTION DETECTION; MOVING-OBJECT DETECTION; SELF ORGANIZATIONS; SELF-ORGANIZING METHOD; STATE-OF-THE-ART METHODS;

EID: 84898079786     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2013.11.006     Document Type: Article
Times cited : (68)

References (29)
  • 1
    • 10444271708 scopus 로고    scopus 로고
    • Robust techniques for background subtraction in urban traffic video
    • S. Panchanathan, B. Vasudev, SPIE
    • S.-c.S. Cheung, and C. Kamath Robust techniques for background subtraction in urban traffic video S. Panchanathan, B. Vasudev, Proc. VCIP vol. 5308 2004 SPIE 881 892
    • (2004) Proc. VCIP , vol.5308 , pp. 881-892
    • Cheung, S.-C.S.1    Kamath, C.2
  • 2
    • 15744378302 scopus 로고    scopus 로고
    • Background subtraction techniques: A review
    • M. Piccardi, Background subtraction techniques: a review, in: Proc. IEEE SMC 2004, vol. 4, pp. 3099-3104.
    • Proc. IEEE SMC 2004 , vol.4 , pp. 3099-3104
    • Piccardi, M.1
  • 4
    • 55249110878 scopus 로고    scopus 로고
    • Moving object detection in spatial domain using background removal techniques: State-of-art
    • S. Elhabian, K. El Sayed, and S. Ahmed Moving object detection in spatial domain using background removal techniques: State-of-art Recent Pat. Comput. Sci. 1 2008 32 54
    • (2008) Recent Pat. Comput. Sci. , vol.1 , pp. 32-54
    • Elhabian, S.1    El Sayed, K.2    Ahmed, S.3
  • 6
    • 84876012779 scopus 로고    scopus 로고
    • A benchmark dataset for outdoor foreground/background extraction
    • J.-I. Park, J. Kim, Lecture Notes in Computer Science Springer Berlin Heidelberg
    • A. Vacavant, T. Chateau, A. Wilhelm, and L. Lequivre A benchmark dataset for outdoor foreground/background extraction J.-I. Park, J. Kim, Computer Vision - ACCV 2012 Workshops Lecture Notes in Computer Science vol. 7728 2013 Springer Berlin Heidelberg 291 300
    • (2013) Computer Vision - ACCV 2012 Workshops , vol.7728 , pp. 291-300
    • Vacavant, A.1    Chateau, T.2    Wilhelm, A.3    Lequivre, L.4
  • 9
    • 0032634283 scopus 로고    scopus 로고
    • Adaptive background mixture models for real-time tracking
    • C. Stauffer, W. Grimson, Adaptive background mixture models for real-time tracking, in: Proc. CVPR 1999, vol. 2, p. 252.
    • (1999) Proc. CVPR , vol.2 , pp. 252
    • Stauffer, C.1    Grimson, W.2
  • 10
    • 21644463503 scopus 로고    scopus 로고
    • Real-time foreground-background segmentation using codebook model
    • K. Kim, T.H. Chalidabhongse, D. Harwood, and L. Davis Real-time foreground-background segmentation using codebook model Real-Time Imaging 11 2005 172 185
    • (2005) Real-Time Imaging , vol.11 , pp. 172-185
    • Kim, K.1    Chalidabhongse, T.H.2    Harwood, D.3    Davis, L.4
  • 11
    • 45949086871 scopus 로고    scopus 로고
    • A self-organizing approach to background subtraction for visual surveillance applications
    • L. Maddalena, and A. Petrosino A self-organizing approach to background subtraction for visual surveillance applications IEEE Trans. Image Process. 17 2008 1168 1177
    • (2008) IEEE Trans. Image Process. , vol.17 , pp. 1168-1177
    • Maddalena, L.1    Petrosino, A.2
  • 12
    • 85124058555 scopus 로고    scopus 로고
    • Background subtraction for visual surveillance: A fuzzy approach
    • S. Pal, A. Petrosino, L. Maddalena, Chapman & Hall/CRC
    • T. Bouwmans Background subtraction for visual surveillance: a fuzzy approach S. Pal, A. Petrosino, L. Maddalena, Handbook on Soft Computing for Video Surveillance 2012 Chapman & Hall/CRC 103 138
    • (2012) Handbook on Soft Computing for Video Surveillance , pp. 103-138
    • Bouwmans, T.1
  • 13
    • 84864991828 scopus 로고    scopus 로고
    • A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection
    • L. Maddalena, and A. Petrosino A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection Neural Comput. Appl. 19 2010 179 186
    • (2010) Neural Comput. Appl. , vol.19 , pp. 179-186
    • Maddalena, L.1    Petrosino, A.2
  • 14
    • 84893045267 scopus 로고    scopus 로고
    • Neural networks in video surveillance: A perspective view
    • S. Pal, A. Petrosino, L. Maddalena, Chapman & Hall/CRC
    • L. Maddalena, and A. Petrosino Neural networks in video surveillance: a perspective view S. Pal, A. Petrosino, L. Maddalena, Handbook on Soft Computing for Video Surveillance 2012 Chapman & Hall/CRC 59 78
    • (2012) Handbook on Soft Computing for Video Surveillance , pp. 59-78
    • Maddalena, L.1    Petrosino, A.2
  • 15
    • 84884969879 scopus 로고    scopus 로고
    • Stopped object detection by learning foreground model in videos
    • L. Maddalena, and A. Petrosino Stopped object detection by learning foreground model in videos IEEE Trans. Neural Net. Learn. Sys. 24 2013 723 735
    • (2013) IEEE Trans. Neural Net. Learn. Sys. , vol.24 , pp. 723-735
    • Maddalena, L.1    Petrosino, A.2
  • 16
    • 0033285765 scopus 로고    scopus 로고
    • Wallflower: Principles and practice of background maintenance
    • K. Toyama, J. Krumm, B. Brumitt, B. Meyers, Wallflower: principles and practice of background maintenance, in: Proc. ICCV 1999, vol. 1, pp. 255-261.
    • (1999) Proc. ICCV , vol.1 , pp. 255-261
    • Toyama, K.1    Krumm, J.2    Brumitt, B.3    Meyers, B.4
  • 17
    • 79952215332 scopus 로고    scopus 로고
    • A low-complexity algorithm for static background estimation from cluttered image sequences in surveillance contexts
    • V. Reddy, C. Sanderson, and B.C. Lovell A low-complexity algorithm for static background estimation from cluttered image sequences in surveillance contexts J. Image Video Process. 2011 2011 1:1 1:14
    • (2011) J. Image Video Process. , vol.2011 , pp. 11-114
    • Reddy, V.1    Sanderson, C.2    Lovell, B.C.3
  • 18
    • 0029457547 scopus 로고
    • Video-based freeway-monitoring system using recursive vehicle tracking
    • B. Gloyer, H.K. Aghajan, K.-Y. Siu, T. Kailath, Video-based freeway-monitoring system using recursive vehicle tracking, in: Proc. SPIE 1995, vol. 2421, pp. 173-180.
    • (1995) Proc. SPIE , vol.2421 , pp. 173-180
    • Gloyer, B.1    Aghajan, H.K.2    Siu, K.-Y.3    Kailath, T.4
  • 20
    • 0019570836 scopus 로고
    • Fast filter transform for image processing
    • P. Burt Fast filter transform for image processing Comput. Graphics Image Process. 16 1981 20 51
    • (1981) Comput. Graphics Image Process. , vol.16 , pp. 20-51
    • Burt, P.1
  • 21
    • 39549093586 scopus 로고    scopus 로고
    • A scale-based connected coherence tree algorithm for image segmentation
    • J. Ding, R. Ma, and S. Chen A scale-based connected coherence tree algorithm for image segmentation IEEE Trans. Image Process. 17 2008 204 216
    • (2008) IEEE Trans. Image Process. , vol.17 , pp. 204-216
    • Ding, J.1    Ma, R.2    Chen, S.3
  • 22
    • 77955431421 scopus 로고    scopus 로고
    • Adaptive shadow estimator for removing shadow of moving object
    • J. Choi, Y.J. Yoo, and J.Y. Choi Adaptive shadow estimator for removing shadow of moving object Comput. Vis. Image Understan. 114 2010 1017 1029
    • (2010) Comput. Vis. Image Understan. , vol.114 , pp. 1017-1029
    • Choi, J.1    Yoo, Y.J.2    Choi, J.Y.3
  • 23
    • 84884551613 scopus 로고    scopus 로고
    • An improved adaptive background mixture model for real-time tracking with shadow detection
    • P. Remagnino, G.A. Jones, N. Paragios, C.S. Regazzoni, Springer US
    • P. KaewTraKulPong, and R. Bowden An improved adaptive background mixture model for real-time tracking with shadow detection P. Remagnino, G.A. Jones, N. Paragios, C.S. Regazzoni, Video-Based Surveillance Systems 2002 Springer US 135 144
    • (2002) Video-Based Surveillance Systems , pp. 135-144
    • Kaewtrakulpong, P.1    Bowden, R.2
  • 24
    • 10044240378 scopus 로고    scopus 로고
    • Improved adaptive Gaussian mixture model for background subtraction
    • Z. Zivkovic, Improved adaptive Gaussian mixture model for background subtraction, in: Proc. ICPR 2004, vol. 2, pp. 28-31.
    • (2004) Proc. ICPR , vol.2 , pp. 28-31
    • Zivkovic, Z.1
  • 25
    • 84875999032 scopus 로고    scopus 로고
    • Illumination invariant background model using mixture of Gaussians and SURF features
    • J.-I. Park, J. Kim, Lecture Notes in Computer Science Springer Berlin Heidelberg
    • M. Shah, J. Deng, and B. Woodford Illumination invariant background model using mixture of Gaussians and SURF features J.-I. Park, J. Kim, Computer Vision - ACCV 2012 Workshops Lecture Notes in Computer Science vol. 7728 2013 Springer Berlin Heidelberg 308 314
    • (2013) Computer Vision - ACCV 2012 Workshops , vol.7728 , pp. 308-314
    • Shah, M.1    Deng, J.2    Woodford, B.3
  • 26
    • 84875968638 scopus 로고    scopus 로고
    • One-class background model
    • J.-I. Park, J. Kim, Lecture Notes in Computer Science Springer Berlin Heidelberg
    • A. Glazer, M. Lindenbaum, and S. Markovitch One-class background model J.-I. Park, J. Kim, Computer Vision - ACCV 2012 Workshops Lecture Notes in Computer Science vol. 7728 2013 Springer Berlin Heidelberg 301 307
    • (2013) Computer Vision - ACCV 2012 Workshops , vol.7728 , pp. 301-307
    • Glazer, A.1    Lindenbaum, M.2    Markovitch, S.3
  • 27
    • 84875991807 scopus 로고    scopus 로고
    • Temporal saliency for fast motion detection
    • J.-I. Park, J. Kim, Lecture Notes in Computer Science Springer Berlin Heidelberg
    • H. Rezazadegan Tavakoli, E. Rahtu, and J. Heikkila Temporal saliency for fast motion detection J.-I. Park, J. Kim, Computer Vision - ACCV 2012 Workshops Lecture Notes in Computer Science vol. 7728 2013 Springer Berlin Heidelberg 321 326
    • (2013) Computer Vision - ACCV 2012 Workshops , vol.7728 , pp. 321-326
    • Rezazadegan Tavakoli, H.1    Rahtu, E.2    Heikkila, J.3
  • 28
    • 78751569728 scopus 로고    scopus 로고
    • Adaptive learning of multi-subspace for foreground detection under illumination changes
    • Y. Dong, and G. DeSouza Adaptive learning of multi-subspace for foreground detection under illumination changes Computer Vision and Image Understanding 115 2011 31 49
    • (2011) Computer Vision and Image Understanding , vol.115 , pp. 31-49
    • Dong, Y.1    Desouza, G.2
  • 29
    • 82155186695 scopus 로고    scopus 로고
    • Robust moving object detection against fast illumination change
    • J. Choi, H.J. Chang, Y.J. Yoo, and J.Y. Choi Robust moving object detection against fast illumination change Comput. Vis. Image Und. 116 2012 179 193
    • (2012) Comput. Vis. Image Und. , vol.116 , pp. 179-193
    • Choi, J.1    Chang, H.J.2    Yoo, Y.J.3    Choi, J.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.