메뉴 건너뛰기




Volumn 2324 LNCS, Issue , 2002, Pages 82-91

PhFit: A general phase-type fitting tool

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS;

EID: 84898077292     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-46029-2_5     Document Type: Conference Paper
Times cited : (117)

References (6)
  • 2
    • 0020419336 scopus 로고
    • On the canonical representation of homogeneous Markov processes modelling failure-time distributions
    • A. Cumani. On the canonical representation of homogeneous Markov processes modelling failure-time distributions. Microelectronics and Reliability, 22:583-602, 1982.
    • (1982) Microelectronics and Reliability , vol.22 , pp. 583-602
    • Cumani, A.1
  • 3
    • 0031701596 scopus 로고    scopus 로고
    • Fitting mixtures of exponentials to long-tail distributions to analyze network performance models
    • A. Feldman and W. Whitt. Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Performance Evaluation, 31:245-279, 1998.
    • (1998) Performance Evaluation , vol.31 , pp. 245-279
    • Feldman, A.1    Whitt, W.2
  • 5
    • 0000879675 scopus 로고    scopus 로고
    • Parameter approximation for phase-type distributions
    • S. R. Chakravarty and A. S. Alfa, editors Marcel Dekker, Inc.
    • A. Lang and J. L. Arthur. Parameter approximation for phase-type distributions. In S. R. Chakravarty and A. S. Alfa, editors, Matrix-analytic methods in stochastic models, pages 151-206. Marcel Dekker, Inc., 1996.
    • (1996) Matrix-analytic Methods in Stochastic Models , pp. 151-206
    • Lang, A.1    Arthur, J.L.2
  • 6
    • 1542313508 scopus 로고    scopus 로고
    • Collected by Laura Bottomley (laurab@ee.duke.edu) of Duke University
    • EPA-HTTP Trace, The Internet Traffic Archive. At http://ita.ee.lbl.gov. Collected by Laura Bottomley (laurab@ee.duke.edu) of Duke University.
    • The Internet Traffic Archive


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.