메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Beating the adaptive bandit with high probability

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE ADVERSARY; BANDIT PROBLEMS; CONFIDENCE INTERVAL; HIGH PROBABILITY; LOWER BOUNDS; MISSING INFORMATION; SAMPLING SCHEMES; SELF-CONCORDANT BARRIERS;

EID: 84898073179     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (17)
  • 2
    • 70349292074 scopus 로고    scopus 로고
    • Beating the adaptive bandit with high probability
    • EECS Department, University of California, Berkeley, Jan
    • J. Abernethy and A. Rakhlin. Beating the adaptive bandit with high probability. Technical Report UCB/EECS-2009-10, EECS Department, University of California, Berkeley, Jan 2009.
    • (2009) Technical Report UCB/EECS-2009-10
    • Abernethy, J.1    Rakhlin, A.2
  • 4
    • 4544345025 scopus 로고    scopus 로고
    • Adaptive routing with end-to-end feedback: Distributed learning and geometric approaches
    • New York, NY, USA ACM
    • Baruch Awerbuch and Robert D. Kleinberg. Adaptive routing with end-to-end feedback: distributed learning and geometric approaches. In STOC'04, pages 45-53, New York, NY, USA, 2004. ACM.
    • (2004) STOC'04 , pp. 45-53
    • Awerbuch, B.1    Kleinberg, R.D.2
  • 6
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett., 31(3): 167-175, 2003.
    • (2003) Oper. Res. Lett. , vol.31 , Issue.3 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 9
    • 85162050055 scopus 로고    scopus 로고
    • The price of bandit information for online optimization
    • J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors MIT Press, Cambridge, MA
    • Varsha Dani, Thomas Hayes, and Sham Kakade. The price of bandit information for online optimization. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS'08. MIT Press, Cambridge, MA, 2008.
    • (2008) NIPS'08
    • Dani, V.1    Hayes, T.2    Kakade, S.3
  • 10
    • 33244456637 scopus 로고    scopus 로고
    • Robbing the bandit: Less regret in online geometric optimization against an adaptive adversary
    • New York, NY, USA ACM
    • Varsha Dani and Thomas P. Hayes. Robbing the bandit: less regret in online geometric optimization against an adaptive adversary. In SODA'06, pages 937-943, New York, NY, USA, 2006. ACM.
    • (2006) SODA'06 , pp. 937-943
    • Dani, V.1    Hayes, T.P.2
  • 11
    • 20744454447 scopus 로고    scopus 로고
    • Online convex optimization in the bandit setting: Gradient descent without a gradient
    • Philadelphia, PA, USA Society for Industrial and Applied Mathematics
    • Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex optimization in the bandit setting: gradient descent without a gradient. In SODA'05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385-394, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.
    • (2005) SODA'05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms , pp. 385-394
    • Flaxman, A.D.1    Kalai, A.T.2    Brendan McMahan, H.3
  • 12
    • 35948943542 scopus 로고    scopus 로고
    • The on-line shortest path problem under partial monitoring
    • A. György, T. Linder, G. Lugosi, and G. Ottucsák. The on-line shortest path problem under partial monitoring. JMLR, 8: 2369-2403, 2007.
    • (2007) JMLR , vol.8 , pp. 2369-2403
    • György, A.1    Linder, T.2    Lugosi, G.3    Ottucsák, G.4
  • 13
    • 9444257628 scopus 로고    scopus 로고
    • Online geometric optimization in the bandit setting against an adaptive adversary
    • H. Brendan McMahan and Avrim Blum. Online geometric optimization in the bandit setting against an adaptive adversary. In COLT, pages 109-123, 2004.
    • (2004) COLT , pp. 109-123
    • Brendan McMahan, H.1    Blum, A.2
  • 14
    • 58149374383 scopus 로고    scopus 로고
    • Interior-point methods for optimization
    • A. Nemirovski and M. Todd. Interior-point methods for optimization. Acta Numerica, pages 191-234, 2008.
    • (2008) Acta Numerica , pp. 191-234
    • Nemirovski, A.1    Todd, M.2
  • 15
    • 0003254250 scopus 로고
    • Interior point polynomial algorithms in convex programming
    • Philadelphia
    • Y. E. Nesterov and A.S. Nemirovskii. Interior Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia, 1994.
    • (1994) SIAM
    • Nesterov, Y.E.1    Nemirovskii, A.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.