-
2
-
-
70349292074
-
Beating the adaptive bandit with high probability
-
EECS Department, University of California, Berkeley, Jan
-
J. Abernethy and A. Rakhlin. Beating the adaptive bandit with high probability. Technical Report UCB/EECS-2009-10, EECS Department, University of California, Berkeley, Jan 2009.
-
(2009)
Technical Report UCB/EECS-2009-10
-
-
Abernethy, J.1
Rakhlin, A.2
-
3
-
-
0037709910
-
The nonstochastic multiarmed bandit problem
-
Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1): 48-77, 2003.
-
(2003)
SIAM J. Comput.
, vol.32
, Issue.1
, pp. 48-77
-
-
Auer, P.1
Cesa-Bianchi, N.2
Freund, Y.3
Schapire, R.E.4
-
4
-
-
4544345025
-
Adaptive routing with end-to-end feedback: Distributed learning and geometric approaches
-
New York, NY, USA ACM
-
Baruch Awerbuch and Robert D. Kleinberg. Adaptive routing with end-to-end feedback: distributed learning and geometric approaches. In STOC'04, pages 45-53, New York, NY, USA, 2004. ACM.
-
(2004)
STOC'04
, pp. 45-53
-
-
Awerbuch, B.1
Kleinberg, R.D.2
-
5
-
-
80555137396
-
High probability regret bounds for online optimization
-
P. L. Bartlett, V. Dani, T. Hayes, S. Kakade, A. Rakhlin, and A. Tewari. High probability regret bounds for online optimization. In Proceedings of The Twenty First Annual Conference on Learning Theory, 2008.
-
(2008)
Proceedings of the Twenty First Annual Conference on Learning Theory
-
-
Bartlett, P.L.1
Dani, V.2
Hayes, T.3
Kakade, S.4
Rakhlin, A.5
Tewari, A.6
-
6
-
-
0037403111
-
Mirror descent and nonlinear projected subgradient methods for convex optimization
-
Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett., 31(3): 167-175, 2003.
-
(2003)
Oper. Res. Lett.
, vol.31
, Issue.3
, pp. 167-175
-
-
Beck, A.1
Teboulle, M.2
-
9
-
-
85162050055
-
The price of bandit information for online optimization
-
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors MIT Press, Cambridge, MA
-
Varsha Dani, Thomas Hayes, and Sham Kakade. The price of bandit information for online optimization. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, NIPS'08. MIT Press, Cambridge, MA, 2008.
-
(2008)
NIPS'08
-
-
Dani, V.1
Hayes, T.2
Kakade, S.3
-
10
-
-
33244456637
-
Robbing the bandit: Less regret in online geometric optimization against an adaptive adversary
-
New York, NY, USA ACM
-
Varsha Dani and Thomas P. Hayes. Robbing the bandit: less regret in online geometric optimization against an adaptive adversary. In SODA'06, pages 937-943, New York, NY, USA, 2006. ACM.
-
(2006)
SODA'06
, pp. 937-943
-
-
Dani, V.1
Hayes, T.P.2
-
11
-
-
20744454447
-
Online convex optimization in the bandit setting: Gradient descent without a gradient
-
Philadelphia, PA, USA Society for Industrial and Applied Mathematics
-
Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex optimization in the bandit setting: gradient descent without a gradient. In SODA'05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385-394, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.
-
(2005)
SODA'05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 385-394
-
-
Flaxman, A.D.1
Kalai, A.T.2
Brendan McMahan, H.3
-
12
-
-
35948943542
-
The on-line shortest path problem under partial monitoring
-
A. György, T. Linder, G. Lugosi, and G. Ottucsák. The on-line shortest path problem under partial monitoring. JMLR, 8: 2369-2403, 2007.
-
(2007)
JMLR
, vol.8
, pp. 2369-2403
-
-
György, A.1
Linder, T.2
Lugosi, G.3
Ottucsák, G.4
-
13
-
-
9444257628
-
Online geometric optimization in the bandit setting against an adaptive adversary
-
H. Brendan McMahan and Avrim Blum. Online geometric optimization in the bandit setting against an adaptive adversary. In COLT, pages 109-123, 2004.
-
(2004)
COLT
, pp. 109-123
-
-
Brendan McMahan, H.1
Blum, A.2
-
14
-
-
58149374383
-
Interior-point methods for optimization
-
A. Nemirovski and M. Todd. Interior-point methods for optimization. Acta Numerica, pages 191-234, 2008.
-
(2008)
Acta Numerica
, pp. 191-234
-
-
Nemirovski, A.1
Todd, M.2
-
15
-
-
0003254250
-
Interior point polynomial algorithms in convex programming
-
Philadelphia
-
Y. E. Nesterov and A.S. Nemirovskii. Interior Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia, 1994.
-
(1994)
SIAM
-
-
Nesterov, Y.E.1
Nemirovskii, A.S.2
|