메뉴 건너뛰기




Volumn , Issue , 2013, Pages 959-962

Sentiment analysis in news articles using sentic computing

Author keywords

Commonsense knowledge; NLP; Sentic computing; Sentiment analysis

Indexed keywords

ENGINES;

EID: 84898040692     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2013.27     Document Type: Conference Paper
Times cited : (25)

References (16)
  • 3
    • 70349529656 scopus 로고    scopus 로고
    • Recognizing contextual polarity: An exploration of features for phrase-level sentiment analysis
    • T. Wilson, J. Wiebe and P. Hoffman, "Recognizing contextual polarity: An exploration of features for phrase-level sentiment analysis," Computational Linguistics, vol. 35, no. 3, pp. 399-433, 2009
    • (2009) Computational Linguistics , vol.35 , Issue.3 , pp. 399-433
    • Wilson, T.1    Wiebe, J.2    Hoffman, P.3
  • 4
    • 84898039281 scopus 로고    scopus 로고
    • In E. Hovy, M. Johnson, and G. Hirst, editors, Theory and Applications of Natural Language Processing, ch. 6. Springer
    • R. Speer and C. Havasi, "ConceptNet 5: A large semantic network for relational knowledge," In E. Hovy, M. Johnson, and G. Hirst, editors, Theory and Applications of Natural Language Processing, ch. 6. Springer, 2012
    • (2012) ConceptNet 5: A Large Semantic Network for Relational Knowledge
    • Speer, R.1    Havasi, C.2
  • 5
    • 84864992296 scopus 로고    scopus 로고
    • SenticNet 2: A semantic and affective resource for opinion mining and sentiment analysis
    • Marco Island
    • E. Cambria, C. Havasi and A. Hussain, "SenticNet 2: A semantic and affective resource for opinion mining and sentiment analysis," in Proceedings of FLAIRS, Marco Island, 2012
    • (2012) Proceedings of FLAIRS
    • Cambria, E.1    Havasi, C.2    Hussain, A.3
  • 8
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer, "BoosTexter: A boosting-based system for text categorization," Machine Learning, vol. 39, no. 2/3, pp. 135-168, 2000
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 9
    • 0037735753 scopus 로고    scopus 로고
    • in Advances in Kernel Methods-Support Vector Learning, B. Scholkopf, C. Burgess and A. Smola, Eds., Cambridge, Massachusetts, MIT Press
    • T. Joachims, "Making large-scale SVM learning practical," in Advances in Kernel Methods-Support Vector Learning, B. Scholkopf, C. Burgess and A. Smola, Eds., Cambridge, Massachusetts, MIT Press, pp. 169-184, 1999
    • (1999) Making Large-scale SVM Learning Practical , pp. 169-184
    • Joachims, T.1
  • 11
    • 84876940246 scopus 로고    scopus 로고
    • Application of multidimensional scaling and artificial neural networks for biologically inspired opinion mining
    • E. Cambria, T. Mazzocco and A. Hussain, "Application of multidimensional scaling and artificial neural networks for biologically inspired opinion mining," Biologically Inspired Cognitive Architectures, vol. 4, pp. 41-53, 2013
    • (2013) Biologically Inspired Cognitive Architectures , vol.4 , pp. 41-53
    • Cambria, E.1    Mazzocco, T.2    Hussain, A.3
  • 13
    • 0035570837 scopus 로고    scopus 로고
    • The nature of emotions
    • R. Plutchik, "The Nature of Emotions," American Scientist, vol. 89, no. 4, pp. 344-350, 2001
    • (2001) American Scientist , vol.89 , Issue.4 , pp. 344-350
    • Plutchik, R.1
  • 15
    • 29344473560 scopus 로고    scopus 로고
    • Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques
    • 2003 (ICDM), Melbourne, Florida, USA, 2003
    • J. Yi, T. Nasukawa, R. Bunescu and W. Niblack, "Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques," in Third IEEE International Conference on Data Mining, 2003 (ICDM 2003), Melbourne, Florida, USA, 2003
    • (2003) Third IEEE International Conference on Data Mining
    • Yi, J.1    Nasukawa, T.2    Bunescu, R.3    Niblack, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.